
✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 797 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 27, Number 3, 797–828, 2023

Clustering cluster algebras with clusters

Man-Wai Cheung, Pierre-Philippe Dechant, Yang-Hui He,
Elli Heyes, Edward Hirst, and Jian-Rong Li

Classification of cluster variables in cluster algebras (in particular,
Grassmannian cluster algebras) is an important problem, which
has direct applications to computations of scattering amplitudes
in physics. In this paper, we apply the tableaux method to clas-
sify cluster variables in Grassmannian cluster algebras C[Gr(k, n)]
up to (k, n) = (3, 12), (4, 10), or (4, 12) up to a certain number of
columns of tableaux, using HPC clusters. These datasets are made
available on GitHub. Supervised and unsupervised machine learn-
ing methods are used to analyse this data and identify structures
associated to tableaux corresponding to cluster variables. Conjec-
tures are raised associated to the enumeration of tableaux at each
rank and the tableaux structure which creates a cluster variable,
with the aid of machine learning.

1 Introduction 797

2 Grassmannian cluster algebras 801

3 Cluster variables in Grassmannian cluster algebras 805

4 Machine Learning 809

5 Conclusion 823

Acknowledgments 824

References 824

1. Introduction

Cluster algebras were first introduced by Fomin and Zelevinsky in 2000 [21]
in the context of Lie theory but have since been applied to many other

797

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 798 — #2
✐

✐

✐

✐

✐

✐

798 Cheung, Dechant, He, Heyes, Hirst, and Li

areas of mathematics and physics, such as in integrable systems, tropical
geometry, and scattering amplitudes. Classification of cluster variables (in
particular cluster variables in Grassmannian cluster algebras) is important
in mathematics [30, 33] and scattering amplitudes in physics [3, 4, 19, 20, 22–
25, 28].

For example, in mathematics, cluster variables in Grassmannian clus-
ter algebras C[Gr(k, n)] correspond to real prime modules of the quantum

affine algebra Uq(ŝlk), [13, 30]. They also correspond to rigid indecomposable
modules in Grassmannian cluster categories [9]. In physics, some particular
scattering amplitudes in N = 4 super Yang-Mills theory can be written as
sums of polylogarithms in variables with a cluster algebra structure, [25].
Remainder functions of MHV scattering amplitudes in the planar limit of
N = 4 super Yang-Mills theory tend to be linear combinations of general-
ized polylogarithms whose symbols are composed of X-coordinates of the
the cluster algebra C[Gr(4, n)], [25]. Cluster X-coordinates can be obtained
from cluster A-coordinates. In this paper, cluster A-coordinates are called
cluster variables.

In short, a cluster algebra is a commutative ring generated inside an
ambient field. It is defined iteratively from an initial seed, consisting of a set
of variables, called a cluster, and a quiver, via a procedure called mutation.
The mutation process produces further seeds, which consist of clusters and
quivers. The cluster algebra is the algebra generated by all cluster variables
(including frozen variables); see §2.1 for more details.

As a set, for integers k ≤ n, the Grassmannian variety Gr(k, n) is the set
of all k-dimensional subspaces of the n dimensional vector space Cn. Scott
[40] proved that there is a cluster algebra structure in the coordinate ring
C[Gr(k, n)]. The ring C[Gr(k, n)] is called a Grassmannian cluster algebra.

Hernandez and Leclerc [30] showed that there is a cluster algebra struc-
ture on the Grothendieck ring K0(Cℓ) of a certain subcategory Cℓ of the
category of finite-dimensional modules of a quantum affine algebra Uq(ĝ). In
the case when g = slk, the cluster algebra K0(Cℓ) is isomorphic to the cluster
algebra C[Gr(k, n,∼)], where C[Gr(k, n,∼)] is the quotient of the Grassman-
nian cluster algebra C[Gr(k, n)] by identifying certain frozen variables with
1, cf. [30, 40].

Simple modules of Uq(ĝ) are parametrized by dominant monomials in
formal variables Yi,s, i ∈ I, s ∈ Z, where I is the set of vertices of the Dynkin
diagram of g, cf. [15]. It is shown in [13] that, in the case of g = slk, the
monoid of dominant monomials is isomorphic to the monoid SSYT(k, [n],∼),
where SSYT(k, [n],∼) is a quotient of the monoid SSYT(k, [n]) of semistan-
dard tableaux (SSYT) of rectangular shape with k rows and with entries

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 799 — #3
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 799

in [n] = {1, . . . , n}, cf. §2.2. Therefore, every simple module of Uq(ŝlk) cor-
responds to a semistandard Young tableau in SSYT(k, [n],∼). It follows,
that the dual canonical basis of C[Gr(k, n,∼)] is in one-to-one correspon-
dence with tableaux in SSYT(k, [n],∼). In particular, cluster variables in
C[Gr(k, n,∼)] correspond to a tableau in SSYT(k, [n],∼).

The set of cluster variables in C[Gr(k, n)] is the union of the set of cluster
variables in C[Gr(k, n,∼)] and the frozen variables in C[Gr(k, n)]. Therefore,
in order to classify cluster variables in C[Gr(k, n)], it suffices to classify
cluster variables in C[Gr(k, n,∼)]. We say that a tableau in SSYT(k, [n],∼)
(resp. SSYT(k, [n])) is a cluster variable if the dual canonical basis element
corresponding to it is a cluster variable in C[Gr(k, n,∼)] (resp. C[Gr(k, n)]).
Up to frozen variables, cluster variables in SSYT(k, [n],∼) and SSYT(k, [n])
are the same.

A simple Uq(ĝ)-module M is called real if M ⊗M is simple, cf. [35]. A
simple Uq(ĝ)-module M is called prime if M is not isomorphic to M1 ⊗M2

for any non-trivial modules M1,M2, cf. [14]. Hernandez and Leclerc [30] con-
jectured that real prime modules of Uq(ĝ) are in one-to-one correspondence
to cluster variables in K0(Cℓ). Therefore it is important to classify cluster
variables in K0(Cℓ), and equivalently in C[Gr(k, n)].

In the context of planar N = 4 super Yang-Mills theory, the clus-
ter variables in C[Gr(k, n)] appear as symbol letters of scattering ampli-
tudes, [4, 19, 20, 25, 28, 29]. Therefore classification of cluster variables in
C[Gr(k, n)] is also important in physics.

For T ∈ SSYT(k, [n]), we say that T is of rank d if T has d columns. We
say that a cluster monomial (in particular, a cluster variable) is of rank r
if the corresponding tableau has rank r. For general k ≤ n, the number of
cluster variables in C[Gr(k, n)] is infinite. On the other hand, if we count
cluster variables in C[Gr(k, n)] with a given rank, then the number is finite.
This is because the number of semistandard Young tableaux with a given
rank is finite.

In this paper, we apply high-performance computing (HPC) clusters to
compute cluster variables in C[Gr(k, n)]. Our method of computing clus-
ter variables is to use mutation of tableaux introduced in [13], cf. Formula
(2). We compute the cluster variables in the Grassmannian cluster algebras
C[Gr(3, 12)] up to rank 6, C[Gr(4, 12)] up to rank 4, and C[Gr(4, 10)] up to
rank 6, cf. Table 1. The datasets produced amount to ∼ 0.75Gb of data and
took ∼ 0.5 million core hours to compute.

https://github.com/edhirst/GrassmanniansML.git

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 800 — #4
✐

✐

✐

✐

✐

✐

800 Cheung, Dechant, He, Heyes, Hirst, and Li

From our results, we obtain conjectural formulas for numbers of cluster
variables of certain ranks in C[Gr(3, n)] and C[Gr(4, n)], cf. Conjecture 3.1:

N3,n,3 = 24

(
n

8

)
+ 9

(
n

9

)
,

N3,n,4 = 288

(
n

9

)
+ 400

(
n

10

)
+ 264

(
n

11

)
+ 48

(
n

12

)
,

N4,n,3 = 174

(
n

8

)
+ 855

(
n

9

)
+ 1285

(
n

10

)
+ 693

(
n

11

)
+ 123

(
n

12

)
,

where Nk,n,r is the number of cluster variables of rank r in C[Gr(k, n)].
We also conjecture that when one replaces a set of numbers a1 < . . . <

am appearing in a cluster variable (tableau) with another set of numbers
a′1 < . . . < a′m, one will obtain another cluster variable, cf. Conjecture 3.2.

Grassmannian cluster algebras have many cluster variables, forming
large datasets with rich structure. Therefore, in addition to computing this
data and making it readily available for physical and mathematical appli-
cation, we also turn to techniques from data science and machine learning
(ML) to analyse these datasets of variables and extract some of this struc-
ture.

More specifically, we would like to study the following problems:

Problem 1.1. Can machine learning methods identify whether a given

semistandard Young tableau corresponds to a cluster variable?

Problem 1.2. What structure of these tableaux can be extracted by machine

learning techniques which identifies the tableau as corresponding to a cluster

variable?

The machine learning methods we employ include both supervised and
unsupervised methods. Support Vector Machines and Neural Networks both
learn to distinguish – with strong performance – tableaux from different al-
gebras, and also learn to distinguish those tableaux that are cluster variables
from those that are not. Principal Component Analysis and K-Means Clus-
tering, also highlight to us the key features in the tableau data.

This paper is structured as follows: In §2 we establish the relevant mathe-
matical background surrounding Grassmannian cluster algebra cluster vari-
ables and their representation as semistandard Young tableaux. In §3 we

https://github.com/edhirst/GrassmanniansML.git

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 801 — #5
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 801

provide information regarding the computation of cluster variables in Grass-
mannian cluster algebras. In §4 we analyse the generated data using tech-
niques from supervised and unsupervised machine learning. Conclusions are
presented in §5.

Coding scripts, and data used in this work are available at the respective
GitHub repository: https://github.com/edhirst/GrassmanniansML.git

2. Grassmannian cluster algebras

In this section, we recall results in [13, 21, 40] about cluster algebras and
Grassmannian cluster algebras.

2.1. Cluster algebras

We begin by recalling the definition of cluster algebras given by Fomin and
Zelevinsky [21].

A quiver Q = (Q0, Q1, s, t) is a directed graph without loops or 2-cycles
that can be described by a vertex set Q0, an arrow set Q1, and maps
s, t : Q1 → Q0 that take an arrow to its source and target, respectively. We
identify Q0 = [m] = {1, . . . ,m} and declare vertices 1, . . . , r as mutable ver-
tices and vertices r + 1, . . . ,m as frozen vertices.

For k ∈ [r], the mutated quiver µk(Q) is a quiver obtained from Q by:

(i) for each sub-quiver i → k → j, add a new arrow i → j,

(ii) reverse the orientation of every arrow with target or source equal to
k,

(iii) remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Let F be an ambient field abstractly isomorphic to a field of rational
functions in m independent variables. A seed in F is a pair (x, Q), where
x = (x1, . . . , xm) is a free generating set of F , called a cluster, and Q is a
quiver. The variables x1, . . . , xr are called cluster variables, and the variables
xr+1, . . . , xm are called frozen variables.

For a seed (x, Q) and k ∈ [r], the mutated seed µk(x, Q) is (x′, µk(Q)),
where x′ = (x′1, . . . , x

′
m) with x′j = xj for j ̸= k and x′k ∈ F determined by

x′kxk =
∏

α∈Q1,s(α)=k

xt(α) +
∏

α∈Q1,t(α)=k

xs(α).

https://github.com/edhirst/GrassmanniansML.git

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 802 — #6
✐

✐

✐

✐

✐

✐

802 Cheung, Dechant, He, Heyes, Hirst, and Li

After making a choice of an initial labeled seed, we say that a seed is
reachable if it can be obtained from the initial seed by a finite sequence
of mutations. One defines the clusters (resp. cluster variables) to be the
clusters (resp. cluster variables) appearing in all reachable seeds. Two cluster
variables are called compatible if they appear together in a cluster. A cluster
monomial is a product of compatible cluster variables. The cluster algebra
is the C-algebra generated by all cluster variables and frozen variables.

2.2. Grassmannian cluster algebras and
semistandard Young tableaux

We denote by Gr(k, n) the Grassmannian of k-planes in Cn and C[Gr(k, n)]
its homogeneous coordinate ring. It was shown by Scott [40] that the ring
C[Gr(k, n)] has a cluster algebra structure. Furthermore, it was shown in
[13] that every cluster monomial (in particular, every cluster variable) in
C[Gr(k, n)] corresponds to a semistandard Young tableau. This was achieved
by using the isomorphism between two cluster algebras: one cluster algebra
is the Grothendieck ring of a certain subcategory of the category of finite-
dimensional modules of the quantum affine algebra Uq(ŝlk); the other cluster
algebra is C[Gr(k, n,∼)], where C[Gr(k, n,∼)] is the quotient of C[Gr(k, n)]
by the ideal ⟨Pi,i+1,...,i+k−1 − 1, i ∈ [n− k + 1]⟩.

For k ≤ n, we denote by SSYT(k, [n]) the set of all semistandard
Young tableaux of rectangular shape with k rows and with entries in
[n] = {1, . . . , n}.

For S, T ∈ SSYT(k, [n]), we denote by S ∪ T the row-increasing tableau
whose ith row is the union of the ith rows of S and T (as multisets). It was
shown in [13] that for any S, T ∈ SSYT(k, [n]), S ∪ T is in SSYT(k, [n]).

We call S a factor of T , and write S ⊂ T , if the ith row of S is
contained in that of T (as multisets), for i ∈ [k]. In this case, we define
T
S
= S−1T = TS−1 to be the row-increasing tableau whose ith row is ob-

tained by removing that of S from that of T (as multisets), for i ∈ [k].
A tableau T ∈ SSYT(k, [n]) is trivial if each entry of T is one less than

the entry below it.
For any T ∈ SSYT(k, [n]), we denote by Tred ⊂ T the semistandard

tableau obtained by removing a maximal trivial factor from T . That is, Tred

is the tableau with the minimal number of columns such that T = Tred ∪ S
for a trivial tableau S. For trivial T , one has Tred = 1 (the empty tableau).
For S, T ∈ SSYT(k, [n]), we define S ∼ T if Sred = Tred. The reduction rela-
tion “∼” is an equivalence relation. We denote by SSYT(k, [n],∼) the set of
∼-equivalence classes.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 803 — #7
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 803

We use the same notation for a tableau T and its equivalence class,
writing either T ∈ SSYT(k, [n]) or T ∈ SSYT(k, [n],∼) when it is important
to distinguish these.

Example 2.1. We illustrate the operations ∪ and ∼:

1 3

2 7

6 11

∪ 1 7

2 9

8 10

= 1 1 3 7

2 2 7 9

6 8 10 11

and 1

3

6

∼ 1 2 3

3 3 4

4 5 6

.

A one-column tableau is called a fundamental tableau if its content
is [i, i+ k] \ {r} for r ∈ {i+ 1, . . . , i+ k − 1}. A tableau T is said to have
small gaps if each of its columns is a fundamental tableau. Any tableau in
SSYT(k, [n]) is ∼-equivalent to a unique small gap tableau.

2.3. Dominance order

Let λ = (λ1, . . . , λℓ) with λ1 ≥ λ2 ≥ · · · ≥ λℓ ≥ 0 and µ = (µ1, . . . , µℓ) with
µ1 ≥ µ2 ≥ · · · ≥ µℓ ≥ 0 be partitions. Then λ ≥ µ in dominance order if∑

j≤i λj ≥
∑

j≤i µj for i = 1, . . . , ℓ. For a tableau T (, not necessarily rectan-
gular shape), let sh(T) denote the shape of T . That is, sh(T) = (λ1, . . . , λr),
where λi is the number of boxes of T in the ith row. For i ∈ [n], let T [i]
denote the restriction of T ∈ SSYT(k, [n]) to the entries in [i]. That is, T [i]
is the tableau obtained from T by removing all boxes which have numbers
greater than i.

For a tableau T , we call the multi-set of numbers appearing (count mul-
tiplicities) in T the content of T . For T, T ′ ∈ SSYT(k, [n]) with the same
content, we say that T ≥ T ′ if sh(T [i]) ≥ sh(T ′[i]) in the dominance order
on partitions, for i = 1, . . . , n.

2.4. Cluster variables in C[Gr(k, n)]

Recall that C[Gr(k, n,∼)] is the quotient of C[Gr(k, n)] by the ideal

⟨Pi,i+1,...,i+k−1 − 1, i ∈ [n− k + 1]⟩.

Theorem 3.25 in [13] states that every cluster variable in the cluster
algebra C[Gr(k, n,∼)] is of the form ch(T) (see Equation (1); the notation
ch(T) is used because it corresponds to the q-character of a module of the

quantum affine algebra Uq(ŝlk)) for some real prime T ∈ SSYT(k, [n]) (a

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 804 — #8
✐

✐

✐

✐

✐

✐

804 Cheung, Dechant, He, Heyes, Hirst, and Li

tableau is called real (resp. prime) if the corresponding quantum affine alge-
bra module is real (resp. prime), [13]). An explicit formula of ch(T) is given
in Theorem 5.8 of [13]:

ch(T) =
∑

u∈Sk

(−1)ℓ(uwT)puw0,wTw0
(1)Pu;T ′ ∈ C[Gr(k, n,∼)](1)

where T ′ is the small gap tableau such that T ∼ T ′, Pu;T ′ is some mono-
mial of Plücker coordinates, wT is some permutation in Sk, and pu,v(q) is a
Kazhdan-Lusztig polynomial. When ch(T) is a cluster variable, we also call
T itself a cluster variable.

Remark 2.2. The set of cluster variables in C[Gr(k, n)] is the union of the
set of cluster variables in C[Gr(k, n,∼)] and frozen variables in C[Gr(k, n)].
The frozen variables (up to sign) in C[Gr(k, n)] are Pi,i+1,...,i+k−1, i ∈ [n],
where i+ n are identified with i. The frozen variables correspond to one-
column tableaux with consecutive entries or with entries {1, 2, . . . , r, n− k +
r + 1, . . . , n− 1, n}, r ∈ [k − 1].

We compute cluster variables in C[Gr(k, n)] in the following way [13,
Section 4]: Starting from the initial seed of C[Gr(k, n)], each time we perform
a mutation at the cluster variable ch(Tr), we obtain a cluster variable ch(T ′

r)
defined recursively by

ch(T ′
r)ch(Tr) =

∏

i→r

ch(Ti) +
∏

r→i

ch(Ti),

with ch(Ti) the cluster variable at the vertex i. Denote by
max{∪i→rTi,∪r→iTi} the tableau which is larger in the dominance
order. The tableau T ′ corresponding to the new cluster variable ch(T ′

r) can
be computed by the following formula:

T ′
r = T−1

r max{∪i→rTi,∪r→iTi}.(2)

The following are some examples of mutations in C[Gr(3, 8)]:

ch(
1

3

4

)ch(
2

3

5

) = ch(
1

3

5

)ch(
2

3

4

) + ch(
1

2

3

)ch(
3

4

5

),

ch(
2

3

8

)ch(
1 3 4

2 5 6

4 7 8

) = ch(
1

2

8

)ch(
3 4

5 6

7 8

)ch(
2

3

4

) + ch(
3

4

8

)ch(
2 4

5 6

7 8

)ch(
1

2

3

).

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 805 — #9
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 805

3. Cluster variables in Grassmannian cluster algebras

In this section, we describe the result of our computations of cluster variables
in C[Gr(k, n)], giving rise to our dataset.

We generate cluster variables by performing random mutations and fol-
lowing formula (2). When we compute cluster variables with ranks less than
or equal to a given number r, if we see a cluster variable (tableau) with rank
greater than r, we mutate at that vertex again so that the cluster variable
with rank greater than r does not appear. In this way, the cluster variables
we generate are always with ranks less or equal to r. In practice, we perform
sufficiently many mutations and when we see that no new cluster variables
appear after ∼ 10000 core hours on the HPC cluster (approximately 10% of
the total core time per run), we conjecture that we have obtained all cluster
variables with ranks less than or equal to r.

3.1. Some finite-type cluster algebras

The cluster algebra C[Gr(3, 3)] has only one frozen variable

1

2

3

,

and no mutable cluster variables.

There are 4 frozen variables in C[Gr(3, 4)]:

1

2

3

,
1

2

4

,
1

3

4

,
2

3

4

and no mutable cluster variables.

In C[Gr(3, 5)], there are 5 cluster variables:

1

3

5

, 2

3

5

, 2

4

5

, 1

2

4

, 1

3

4

,

https://github.com/edhirst/GrassmanniansML.git

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 806 — #10
✐

✐

✐

✐

✐

✐

806 Cheung, Dechant, He, Heyes, Hirst, and Li

and 5 frozen variables:

1

2

3

,
2

3

4

,
3

4

5

,
1

2

5

,
1

4

5

.

In C[Gr(3, 6)], there are 16 cluster variables:

1

4

6

,
3

4

6

,
2

4

6

,
2

3

6

,
2

5

6

,
2

4

5

,
2

3

5

,
1

2

5

,
1

4

5

,
1

3

5

,
1

3

4

,
1

3

6

,
3

5

6

,
1

2

4

,
1 3

2 5

4 6

,
1 2

3 4

5 6

,

and 6 frozen variables:

1

2

3

, 2

3

4

, 3

4

5

, 4

5

6

, 1

5

6

, 1

2

6

.

In C[Gr(3, 7)], there are 28 one-column tableaux which are cluster vari-
ables and 7 one-column tableaux which are frozen variables. There are 14
rank 2 cluster variables which are obtained by sending i 7→ ai in

1 3

2 5

4 6

, 1 2

3 4

5 6

,

where a1 < · · · < a6 ∈ {1, . . . , 7}.

In C[Gr(3, 8)], there are 48 one-column tableaux which are cluster vari-
ables and 8 one-column tableaux which are frozen variables. There are 56
rank 2 cluster variables which are obtained by sending i 7→ ai in the tableaux

1 3

2 5

4 6

, 1 2

3 4

5 6

,

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 807 — #11
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 807

where a1 < · · · < a6 ∈ {1, . . . , 8}. There are 24 rank 3 cluster variables:

1 3 4

2 5 6

4 7 8

, 1 2 4

2 3 7

5 6 8

, 1 2 3

4 5 6

6 7 8

, 1 1 3

2 5 6

4 7 8

, 1 3 4

2 6 7

5 7 8

, 1 2 3

3 4 5

6 7 8

, 1 2 5

3 4 7

6 8 8

, 1 2 5

3 4 7

5 6 8

,

1 2 3

4 4 5

6 7 8

, 1 3 4

2 6 7

5 8 8

, 1 3 4

2 5 6

5 7 8

, 1 2 5

3 4 7

6 6 8

, 1 2 3

2 5 6

4 7 8

, 1 2 3

4 5 6

7 7 8

, 1 1 2

3 4 5

6 7 8

, 1 2 4

3 3 7

5 6 8

,

1 2 4

3 4 7

5 6 8

, 1 2 5

3 4 7

6 7 8

, 1 2 3

4 5 5

6 7 8

, 1 2 2

3 4 5

6 7 8

, 1 3 4

2 6 6

5 7 8

, 1 2 3

4 5 6

7 8 8

, 1 1 4

2 3 7

5 6 8

, 1 3 3

2 5 6

4 7 8

.

For general k ≤ n, there are infinitely many cluster variables in
C[Gr(k, n)]. On the other hand, there are finitely many cluster variables
in C[Gr(k, n)] with a fixed rank. For example, there are 168 rank 2 cluster
variables and 225 rank 3 cluster variables in C[Gr(3, 9)], [9].

As a core part of the work in this project, we have computed databases
which contain all cluster variables with certain ranks in C[Gr(k, n)] for se-
lected k, n (noting these naturally contain all lower ns). Specifically, we
compute the cluster variables as semistandard Young tableaux in the Grass-
mannian cluster algebras C[Gr(3, 12)] up to rank 6, C[Gr(4, 12)] up to rank
4, and C[Gr(4, 10)] up to rank 6, totaling 2656212, 3089105, and 6346878
tableaux respectively. All datasets are available on GitHub.

3.2. Numbers of cluster variables with given ranks

We denote by Nk,n,r, the number of cluster variables (including frozen
variables) of rank r in C[Gr(k, n)]. Using high-performance computing, we
stochastically compute all cluster variables with certain rank in C[Gr(k, n)].
Since the process is stochastic we cannot explicitly verify this is an exhaus-
tive list, however we note that in each case the last ∼10% of runs did not
generate any new variables. Therefore, the numbers Nk,n,r in Table 1 pro-
vide at the very least lower bounds on the true number of cluster variables,
and likely, equality.

It was proved in [9], that the number of rank 2 cluster variables in
C[Gr(k, n)] (k ≤ n/2) is at least

Nk,n,2 =

k∑

r=3

(
2r

3
· p1(r) + 2r · p2(r) + 4r · p3(r)

)
·

(
n

2r

)(
n− 2r

k − r

)
,(3)

https://github.com/edhirst/GrassmanniansML.git

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 808 — #12
✐

✐

✐

✐

✐

✐

808 Cheung, Dechant, He, Heyes, Hirst, and Li

r 1 2 3 4 5 6 7 8 9 10

N3,3,r 1 0 0 0 0 0 0 0 0 0

N3,4,r 4 0 0 0 0 0 0 0 0 0

N3,5,r 10 0 0 0 0 0 0 0 0 0

N3,6,r 20 2 0 0 0 0 0 0 0 0

N3,7,r 35 14 0 0 0 0 0 0 0 0

N3,8,r 56 56 24 0 0 0 0 0 0 0

N3,9,r 84 168 225 288 372 414 522 594 612 744

N3,10,r 120 420 1170 3280 8200 19140

N3,11,r 165 924 4455 20504 77957 256553

N3,12,r 220 1848 13860 92980 486172 2061132

N4,4,r 1 0 0 0 0 0 0 0 0 0

N4,5,r 5 0 0 0 0 0 0 0 0 0

N4,6,r 15 0 0 0 0 0 0 0 0 0

N4,7,r 35 14 0 0 0 0 0 0 0 0

N4,8,r 70 120 174 208 296 304 420 416 536 480

N4,9,r 126 576 2421 8622 27054 69390

N4,10,r 210 2040 17665 117930 597500 2353760

N4,11,r 330 5940 90563 980100

N4,12,r 495 15048 367479 5963856

Table 1. Number of cluster variables in C[Gr(k, n)] of rank r. Note each
Nn,k,r contains all those in Nn,k−1,r by definition, so there are (Nn,k,r −
Nn,k−1,r) new SSYT cluster variables for each box. Empty box entries denote
variables to be computed in future work, and were beyond reasonable means
for current computation.

where pi(r) is the number of partitions r = r1 + r2 + r3 such that r1, r2, r3 ∈
Z≥1 and |{r1, r2, r3}| = i. According to our computation results, we expect
that the number of rank 2 cluster variables in C[Gr(k, n)] (k ≤ n/2) is ex-
actly given by formula (3).

According to our computation results, we also have the following con-
jectures:

Conjecture 3.1. The corresponding number of cluster variables is given

by the following expressions

N3,n,3 = 24

(
n

8

)
+ 9

(
n

9

)
,

N3,n,4 = 288

(
n

9

)
+ 400

(
n

10

)
+ 264

(
n

11

)
+ 48

(
n

12

)
,

N4,n,3 = 174

(
n

8

)
+ 855

(
n

9

)
+ 1285

(
n

10

)
+ 693

(
n

11

)
+ 123

(
n

12

)
.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 809 — #13
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 809

Conjecture 3.2. For any tableau T ∈ SSYT(k, [n]) with entries a1 < . . . <
ar and any function f : {a1, . . . , ar} → [n′], n′ ≥ n, such that f(a1) < . . . <
f(ar), we have that T is a cluster variable in C[Gr(k, n)] if and only if f(T)
is a cluster variable in C[Gr(k, n′)].

4. Machine Learning

With the increase in computational power over the preceding decades, the
ability to generate large amounts of mathematical data has become far more
manageable. Where past mathematical work has focused on conjecture for-
mulation from computation by hand on smaller samples of selected examples,
now with larger datasets and algorithms to perform analysis computation-
ally, data science is steadily becoming a key player in mathematical research.

Machine learning (ML), an umbrella field encompassing a large range of
techniques from supervised, unsupervised, and reinforcement learning, has
already seen a large amount of success in mathematics and related areas
[2, 6–8, 10–12, 16, 17, 26, 27, 31, 32, 34, 36, 39]. Of particular relevance
here, is past work on the use of ML to examine exchange graphs describing
cluster seed interrelations [5, 18], built on [37].

With the 3 large datasets of cluster variables represented as SSYT,
specifically {C[Gr(3, 12)] r6, C[Gr(4, 10)] r6, C[Gr(4, 12)] r4} where r# de-
notes the maximum rank (number of tableau columns) considered, we now
apply a variety of techniques from ML to analyse them.

4.1. Data Formatting

To ensure consistent formatting for data processing, all the SSYT were for-
matted as numpy arrays in python, padded with zeros up to the maximum
size, such that they all had shape (4,6).

Examples of these arrays represented as images are shown in Figure 1,
where the clear padding of the k = 3 cases (bottom row all zeros) and r = 4
cases (right two columns all zeros) are shown for the C[Gr(3, 12)] r6 and
C[Gr(4, 12)] r4 datasets respectively. The lighter box in the C[Gr(4, 12)]
r4 example indicates the higher maximum entry than C[Gr(4, 10)] r6 as
n = 12 > 10.

These images just represent single examples from these Grassmannian
cluster algebras. In each case lower rank SSYT are included (with more
columns padded), as well as those with a smaller range of entries (where the
colours are darker throughout the image).

https://github.com/edhirst/GrassmanniansML.git

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 810 — #14
✐

✐

✐

✐

✐

✐

810 Cheung, Dechant, He, Heyes, Hirst, and Li

(a) C[Gr(3, 12)], r ≤ 6 (b) C[Gr(4, 10)], r ≤ 6 (c) C[Gr(4, 12)], r ≤ 4

Figure 1. Example images produced from the padded versions of the SSYT
representing cluster variables in the respective Grassmannians. Note that
for C[Gr(k, n)] k represents the number of rows, n the maximum entry, and
r the rank and hence the number of columns. These example images have
the maximum rank in each case.

4.1.1. NCV Data Generation. A point of key importance is that not all
SSYT represent cluster variables in Grassmannian cluster algebras. There-
fore one can create tableaux that increase along the k rows, strictly increase
down the r columns, and with maximum entry n, which do not correspond
to a cluster variable in the Grassmannian C[Gr(k, n)] with rank up to r.

Therefore, we refer back to Problem 1.1: can ML techniques discover a
relation that allows them to identify this? However, prior to applying ML
methods, non-cluster-variable data, which we denote ‘NCV’, corresponding
to SSYT which are not cluster variables must be generated. Conversely, we
denote the dataset of SSYT which are cluster variables as ‘CV’.

For each Grassmannian CV dataset an equivalent NCV dataset was gen-
erated, such that the number of rows, maximum entry, and maximum num-
ber of columns matched the Grassmannian’s k, n, r respectively. Before gen-
erating each tableau, the number of columns was sampled from [1, r]. The
NCV SSYTs were then initialised as random arrays of entries in the range
[1, n], which were sorted (enforcing an increase along the rows), then columns
were checked and entries regenerated until the condition of strictly increas-
ing down columns was met. Exhaustive checks were then applied to ensure
each NCV SSYT was: 1) not in the respective Grassmannian CV dataset;
2) not already generated. These exhaustive checks ensure that the data is
truly an NCV SSYT. We generate 10,000 tableaux for each NCV dataset, to
be compared with a random sample of 10,000 tableaux from each respective
Grassmannian.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 811 — #15
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 811

4.2. Supervised Classification

In this subsection the content of Problem 1.1 is addressed, namely: how well
can ML architectures learn to distinguish SSYT from different Grassman-
nian cluster algebras, or SSYT which are cluster variables from those which
are not?

The ML architectures considered in this work are Support Vector Ma-
chines (SVM) and dense feed-forward Neural Networks (NN).

The goal of SVMs is to find p− 1-dimensional hypersurfaces that best
separate data points of different classes in Rp, where in our case p = 24 for
the 24 entries of the SSYT. The shape of the hypersurface is dictated by the
kernel style, and a regularisation parameter adds a cost to each parameter
used to define the hypersurface – discouraging them from overfitting and
becoming too complicated. The hypersurfaces are fitted using training data
and later performance-tested with test data. The SVM we use here has
regularisation parameter of 1.0 uses a Gaussian ‘rbf’ kernel. We train until
we reach a tolerance of 0.001 for fractional improvement in the proportion
of correct classifications.

NNs are designed for complex non-linear function fitting. They are built
out of perceptrons which take a vector as input, then output a number
via linear action followed by non-linear activation: output = act

(∑
i(wi ·

inputi) + b
)
for weights wi and bias b. Layers of these perceptrons all con-

nected to the subsequent layer make the NN dense, and feed-forward, as
data flows through the network from initial input, through the layers, to
final output. The optimiser algorithm updates the weights and biases (by
amounts proportional to the learning rate) during training to minimise the
loss function, which is a measure of the difference between the NN predicted
and the real output for each specific input, over batches of input data. The
NN architecture we use consists of three layers of size 16, 32 and 16, the
perceptrons in each layer use ReLU activation, and the network is trained
to minimise log-loss using the Adam optimisation algorithm, with batch
size 200 and a learning rate of 0.001 until convergence below a tolerance of
0.0001.

Both these architectures take the sklearn default hyperparameter val-
ues [38].

The learning performance is measured using accuracy and Matthew’s
correlation coefficient (MCC) on the test set predictions. These metrics may
be described as functions on the confusion matrix (CM). Accuracy is the
proportion of predictions that are correctly classified (i.e., the normalised
sum of the diagonal of the confusion matrix). MCC is an analogue of this

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 812 — #16
✐

✐

✐

✐

✐

✐

812 Cheung, Dechant, He, Heyes, Hirst, and Li

that accounts for off-diagonal terms, such that dataset bias is avoided in
altering the validity of the measure. The learning is carried out using 5-fold
cross-validation, meaning that we train and test the network on 5 different
partitions of the data, such that the union of the test sets equals the full
dataset. This produces a set of 5 results for each learning measure, from
which we compute an average and the standard error.

The first investigation uses NNs to perform multiclassification between
the SSYT of the 3 Grassmannian CV datasets, whilst the second uses both
SVMs and NNs to perform binary classification between the CV and NCV
SSYT for each dataset. Due to the computational demands of training, ran-
dom samples of 10,000 tableaux were taken from each Grassmannian CV
dataset, to match the sizes of the generated NCV datasets.

4.2.1. Grassmannian Multiclassification. Before performing the NN
supervised multiclassification between the 3 Grassmannian CV databases, it
is noted that the C[Gr(4, 10)] r6 and C[Gr(4, 12)] r4 databases have natural
overlap of tableaux in C[Gr(4, 10)] r4. Using Table 1, the two Grassmanni-
ans have 137845 variables in common; hence 137845/3089105 ∼ 0.04 of the
C[Gr(4, 10)] r6 data is in C[Gr(4, 12)] r4 and 137845/6346878 ∼ 0.02 of the
C[Gr(4, 12)] r4 data is in C[Gr(4, 10)] r6. Therefore to avoid multi-labelling
of tableaux for this classification problem the C[Gr(4, 10)] r4 tableaux were
removed from both relevant datasets.

The learning measures, with standard error over the cross-validation, to
3 decimal places were:

Accuracy = 1.000± 0.000 ,(4)

MCC = 1.000± 0.000 ,(5)

CM =



0.333± 0.000 0.000± 0.000 0.000± 0.000
0.000± 0.000 0.333± 0.000 0.000± 0.000
0.000± 0.000 0.000± 0.000 0.333± 0.000


 ,(6)

where in the confusion matrix entries CMij have i index as the true class
and j index as the predicted class. The three Grassmannian classes are
(1, 2, 3) = (C[Gr(3, 12)]r6,C[Gr(4, 10)]r6,C[Gr(4, 12)]r4) respectively.

These results show perfect performance in identifying the Grassmannian
a tableau belongs to. This is reassuring behaviour as already by eye one can
distinguish the C[Gr(3, 12)] tableaux by the number of rows, as well as the
tableaux from the two k = 4 databases due to the number of columns (i.e.
rank) or maximum entry.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 813 — #17
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 813

4.2.2. Binary Classification of Cluster Variables from SSYT.
Learning measures for both SVM and NN architectures performing binary
classification between the Grassmannian CV data and respective NCV data
are shown in Table 2.

Architecture
Learning
Measure

Grassmannian
C[Gr(3,12)] r6 C[Gr(4,10)] r6 C[Gr(4,12)] r4

SVM
Accuracy

0.913
± 0.002

0.928
± 0.001

0.925
± 0.001

MCC
0.830

± 0.004
0.867

± 0.004
0.852

± 0.002

NN
Accuracy

0.938
± 0.002

0.946
± 0.002

0.941
± 0.002

MCC
0.878

± 0.003
0.893

± 0.005
0.885

± 0.004

Table 2. Supervised binary classification between CV SSYT representing
cluster variables in the respective Grassmannians, and NCV generated ma-
trices designed to mimic them.

Both architecture styles are incredibly successful at determining the clus-
ter variables from the full sets of SSYT. However, the still exceptional per-
formance of the SVMs indicates that there is likely some unknown implicit
structure in the SSYT entries that make them cluster variables.

In each case the NN architecture performs better, as may be expected
since the architecture is more general. The MCC scores correlate with ac-
curacy, which is reassuring that the data is representative and unbiased,
whilst the better performance for C[Gr(4, 10)] r6 over C[Gr(4, 12)] r4 implies
that rank is a more important feature for determining the cluster variable
property. Explicit analysis of the misclassified SSYT in each case show no
discernible pattern in the tableaux, confirming that the architectures are
picking up on a more subtle structure for their learning.

These results confidently answer Problem 1.1 affirmatively: ML can pick
up on the underlying structure that makes a SSYT a cluster variable.

4.3. Principal Component Analysis

While supervised learning methods are better adapted to address the
classification-style of Problem 1.1, techniques from the ML subfield of unsu-
pervised learning are better suited to extracting such underlying structure
in the data as desired for Problem 1.2.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 814 — #18
✐

✐

✐

✐

✐

✐

814 Cheung, Dechant, He, Heyes, Hirst, and Li

The first of the techniques we consider is Principal Component Analy-
sis (PCA). As a technique, PCA extracts the most important features of a
dataset through diagonalisation of the covariance matrix between the data
dimensions across the dataset. Identifying the eigenvectors of the covari-
ance matrix and sorting them by decreasing eigenvalue, the data points can
be projected onto their most significant principal components which best
describe the most variance – and hence structure – in the data. These eigen-
values can also be reinterpreted as the explained variance, giving the amount
of variance explained by each component. It is often useful to consider these
explained variances as ratios, such that they have been normalised to sum
to 1.

Traditional PCA, as just described, may be generalised to kernel PCA.
There, the data points are conceptually mapped to a higher-dimensional
space where distinguishing them becomes substantially easier due to the
larger number of degrees of freedom. Then the principal components in this
space can be computed, the transformed data points projected onto them,
and mapped back to the original space. However, these higher-dimensional
computations are costly and can in fact be avoided altogether by using the
‘kernel trick’. The trick combines the above steps by defining a kernel that
represents this mapping and projection, circumventing the need to actually
compute in the higher-dimensional space in practice.

Whereas traditional PCA acts effectively with a linear mapping and
hence linear kernel, kernel PCA can introduce non-linearity into the principal
components, and hence identify non-linear structure in the data.

As a testing ground, we perform PCA (i.e. linear kernel PCA) on the
Grassmannian CV data and equivalent NCV datasets. In each case the 24
explained variances over this 24-dimensional data have largest 2 normalised
values

C[Gr(3, 12)] r6 =⇒ (0.592, 0.138) ,

C[Gr(4, 10)] r6 =⇒ (0.631, 0.139) ,

C[Gr(4, 12)] r4 =⇒ (0.488, 0.179) ,

respectively. These clearly dominate the data structure (other explained
variance ratios are all at least an order of magnitude smaller), and are re-
spectively plotted as 2-dimensional plots in Figure 2.

As shown in each of these plots the NCV data (10,000 tableaux) sits
nicely within the projections of the much larger Grassmannian CV datasets.
This again emphasises that the NCV data is representative in the principal

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 815 — #19
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 815

(a) C[Gr(3, 12)] r6 (b) C[Gr(4, 10)] r6

(c) C[Gr(4, 12)] r4

Figure 2. PCA decomposition (linear kernel) of the SSYT CVGrassmannian
and NCV data for each of the respective datasets. The PCA shows that the
NCV data generation is representative in the principal components.

components, and hence there is no significant linear structure that the su-
pervised architectures can take advantage of in order to learn to distinguish
the NCV data. It also further supports the point that the property that
distinguishes cluster from NCV SSYT is more subtle, and hence it is even
more impressive that the ML methods can pick up on it so successfully.

The clear clustering of each dataset is intriguing behaviour in itself –
one we will further analyse in the following subsections.

4.3.1. PCA Clustering. Performing PCA on all the Grassmannian CV
datasets together produces an amalgamation of the aforeseen individual
PCA plots for each dataset. This PCA had dominant two explained vari-
ance ratios (0.592, 0.214), again reinforcing the 2D plotting of the two most
significant principal components. These two components are shown in Fig-
ure 3a, and the equivalent two for a Gaussian ‘rbf’ kernel in Figure 3b.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 816 — #20
✐

✐

✐

✐

✐

✐

816 Cheung, Dechant, He, Heyes, Hirst, and Li

(a) Linear kernel (b) Gaussian kernel

Figure 3. PCA decomposition of the SSYT data for the 3 Grassmannians,
using (a) linear and (b) Gaussian kernels respectively. Note there is signif-
icant overlap between C[Gr(4, 10)] r6 and C[Gr(4, 12)] r4 as expected, and
cluster separation is largely due to padding – hence correctly clustering ac-
cording to rank. The Gaussian kernel PCA was computed over a sample of
10,000 CV SSYT from each Grassmannian due to memory limits with the
full datasets.

The Gaussian kernel PCA was performed over samples of 10,000 SSYT per
dataset to allow feasible computation.

The linear PCA shows a clear separation of the C[Gr(3, 12)] r6 data,
and a majority of the C[Gr(4, 10)] r6 data separating from the C[Gr(4, 12)]
r4 data. This behaviour indicates simple structure differentiating the SSYT
in each Grassmannian, which we may expect since the padding of the bot-
tom row of C[Gr(3, 12)] r6 data clearly separates it, whilst equally padding
of the rightmost two columns for the majority of the C[Gr(4, 12)] r4 data
helps identify that data (where the maximum entry > 10). There is overlap
in the leftmost part of the linear PCA plot, where the two k = 4 Grassman-
nians have common data. This was computationally confirmed to be exactly
and exclusively the overlap data C[Gr(4, 10)] r4. This separation supports
the exceptional results in §4.2.1 where the Grassmannians could be easily
distinguished.

We delay the analysis of the separation and shapes of the clusters within
each Grassmannian until the next subsection. Having tried other kernels
for all the Grassmannian data, the pattern appeared most striking for a
Gaussian kernel. In this kernel PCA the Grassmannians are clearly separated
into symmetrically distributed lines, with some overlap of the low n and low
rank tableaux where k = 4, and additionally some surprising overlap with

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 817 — #21
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 817

the C[Gr(3, 12)] r6 data. Since the kernel was Gaussian this indicates the
patches in Figure 3a were approximately Gaussian distributed, which reduce
to a linear parameter in each case for each dataset’s line.

4.3.2. Dissecting the Clusters. The clear separation of the individual
clusters for each Grassmannian CV dataset emblematises significant data
structure. The cause of this clustering should be simple, and is well shown
by the linear PCA plots for the rank-partitioning of the C[Gr(3, 12)] data
in Figure 4a: namely, each cluster corresponds to a different rank of the
data, simply identifiable by the padding, and hence easily leading to cluster
separation.

The cluster relative sizes and shapes are more interesting, and are mani-
festly represented by the n-partitioning of the data in Figure 4b, which gives
the clusters a mussel-like appearance. These plots show that all the clusters
exhibit higher n ≥ 9 tableaux; however, only the smallest cluster has data
for n ≤ 8. This is likely due to the fact that as one goes to larger ranks there
are more tableau boxes to fill which require a higher maximum number to
satisfy the SSYT conditions. This split can be attributed to the fact that
many more ranks can be used to construct tableaux when n > 8, as shown
in Table 1. This table also shows why no n ≤ 8 tableaux appear in the larger
clusters, as these exclusively correspond to higher rank data.

The cluster sizes correlate with the rank; this may be expected since
higher rank tableaux have more entries and thus more combinations of num-
bers are available. However a priori, since we know that not all SSYT are
cluster variables one may not expect – although we can build more SSYT at
higher rank – that there would also be more cluster variables; this analysis
shows that this is the case.

The cluster shapes show large amounts of overlap between n-partitions in
the data, where each tableau appears to have a counterpart with a higher n;
one may imagine this to be due to each tableau with maximum entry (say 9)
being mapped on top of an identical tableau with all the same entries except
that the final largest box has entry 10, 11, or 12. As the n value increases
by one there is also a large number of new tableaux that can be created by
increasing the largest entry to this new value, then trialing all combinations
of increasing preceding entries by 1. This is what causes the clusters to grow
as n is increased.

This clustering behaviour is repeated in the other two datasets also, with
near-identical appearance, indicative of the structure being relevant to all
Grassmannian CV data, and not specifically the C[Gr(3, 12)] data shown in
Figure 4.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 818 — #22
✐

✐

✐

✐

✐

✐

818 Cheung, Dechant, He, Heyes, Hirst, and Li

(a) C[Gr(3, 12)] partitioned according to r ∈

[1, 6]
(b) C[Gr(3, n)] r6 partitioned according to
n ∈ [3, 12]

Figure 4. PCA decomposition (linear kernel) of the C[Gr(3, 12)] SSYT data,
plotted with partitions according to the rank r or maximum entry n. The
PCA shows that the clusters separate according to rank, whilst the differing
values of n expand the cluster sizes, akin to a mussel. Equivalent behaviour
also holds for the other Grassmannians considered.

Therefore we can conclude that linear PCA can be used to distinguish
clusters of Grassmannian cluster variables as SSYT according to their rank
and k values, and gives an indication of the correlations with n. However, it
cannot distinguish the NCV SSYT data from the CV SSYT data.

4.4. K-Means Clustering

An alternative unsupervised ML technique used for clustering is K-Means.
This takes initialised centres for a preset number of clusters and aims to
minimise the squared distance between each data point and its nearest clus-
ter (whose sum is the inertia I). It does this by iteratively allocating all
data points to their nearest cluster, then replacing that cluster centre with
the centroid of the cluster, then reallocating closest clusters for each data
point.

Clustering performance is measured with inertia I, which is the total
Euclidean squared distance between each point and its closest cluster centre.
Further to the full sum, inertia may also be normalised in various ways to
improve interpretability. The two normalisation methods considered were:
(1) divide by the total number of points and dimensions to give the average
squared distance that a datapoint was from its closest cluster centre in a
single dimension Î; and (2) divide by total number of points and dimensions,
and the range of data entries Î ′ to give a more relative version of (1).

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 819 — #23
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 819

Cluster
Grassmannian

C[Gr(3, 12)] r6 C[Gr(4, 10)] r6 C[Gr(4, 12)] r4

1 2656042 0 0

2 0 2951260 0

3 170 137845 6346878

Table 3. The distributions of the three Grassmannian CV datasets between
the 3 clusters generated through the K-Means process.

The K-Means clustering algorithm used the sci-kit learn standard
hyperparameters [38], such that 10 random initialisations are run to a con-
vergence of 0.0001 tolerance in the inertia update or for a maximum of 300
iteration steps, with the best initialisation run selected.

To determine the optimal number of clusters to use, an elbow method
is applied which reruns the clustering algorithm for a range of numbers
of clusters and plots the inertia relative to the final inertia using just one
cluster, and adding 0.01 × the number of clusters (so as to penalise using
too many clusters). Whereas in traditional elbow methods the optimum
number of clusters is represented by the largest change in gradient, in this
formulation with the linear term in number of clusters added to the inertia,
the lowest value across this range gives the optimal number of clusters.

4.4.1. Distinguishing Grassmannians. Whereas the PCA shows that
the Grassmannian CV datasets can be well distinguished with simple lin-
ear structure using only a few components, we now investigate the use of
K-Means on the full 24-dimensional tableaux vectors to further probe this
observed clustering in the full-dimensional space. To first exemplify the util-
ity of K-Means, we perform clustering for a concatenated list of all the
tableaux across the three datasets, with a preset number of clusters of 3.

The K-Means algorithm converges, giving inertia measures:

(7) I = 672000000, Î = 2.32, Î ′ = 0.193,

to three significant figures. Dissecting how each of the datasets split between
the clusters leads to the distributions shown in Table 3.

The inertia results are best interpreted using Î ′, where after clustering
has converged, each datapoint is on average < 20% of the range of tableaux
entries away from its closest cluster centre in each dimension. Since it has
been established that there is already a noticeable overlap between the

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 820 — #24
✐

✐

✐

✐

✐

✐

820 Cheung, Dechant, He, Heyes, Hirst, and Li

datasets this clustering is quite strong, and exemplifies the power of this
technique in high-dimensional clustering.

The distributions of the cluster allocations for tableaux in each dataset,
as shown in Table 3, solidify the algorithm’s ability to distinguish tableaux
according to the Grassmannian they relate to. The misclassifications where
tableaux in the same Grassmannian were put in a different cluster hap-
pened with proportions 0.00006, 0.045, 0 for each of the C[Gr(3, 12)] r6,
C[Gr(4, 10)] r6, C[Gr(4, 12)] r4 datasets respectively. Further explicit anal-
ysis shows those misclassified for C[Gr(3, 12)] r6 all had rank ≤ 2 and likely
the large number of zeros for these padded tableaux threw off the cluster-
ing, whilst those misclassified for C[Gr(4, 10)] r6 all had rank ≤ 4 and were
exactly the 137845 tableaux in the overlap with C[Gr(4, 12)] r4.

4.4.2. Distinguishing Cluster Tableaux. Now using the K-Means
clustering method to probe the structure differentiating SSYT which are
cluster variables from those which are not, each Grassmannian CV dataset
is compared against its respective NCV dataset.

Manually setting 2 clusters did not partition as well the full list of all
SSYT (both cluster variables, and non-cluster variables) into their respective
classes for each of the Grassmannians. Although relatively more weight was
put into one of the clusters for each case. These partitions are shown in Table
4, and show that ∼ 20% of the data is misclassified under the clustering
in each case. Explicit analysis for each of the Grassmannians (where rmax

indicates the maximum rank in the dataset) shows that the misclassified
NCV tableaux were all of rank rmax, which were actually all of the NCV
tableaux with rank rmax in the NCV datasets, whilst the misclassified CV
tableaux were all rank < rmax, being all the rank < rmax tableaux in the
respective datasets. Therefore although Table 4 appears to show clustering
performance related to this property, it is only an artefact of the clustering
algorithm partitioning off the largest rank.

To further investigate this K-Means on the clustering behaviour the el-
bow method was applied to identify the optimum number of clusters for
partitioning the CV from NCV tableaux for the C[Gr(3, 12)] r6 dataset.
The scaled inertia (relative to inertia with 1 cluster) is plotted for varying
numbers of clusters in Figure 5.

The optimum produced by this process was 9 clusters, although as can
be seen from the graph there is no obvious optimum as the performance
plateaus such that adding additional clusters does not improve the cluster-
ing performance. These results clearly show that the K-Means algorithm
cannot find structure in these datasets that leads to an obvious clustering,

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 821 — #25
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 821

Cluster
Grassmannian

C[Gr(3, 12)] r6 C[Gr(4, 10)] r6 C[Gr(4, 12)] r4
CV NCV CV NCV CV NCV

1 2061132 595080 2352760 735345 5963856 383022

2 1969 8031 2311 7689 3254 6746

Table 4. The distributions of the ‘CV’ cluster variable SSYT and the ‘NCV’
non-cluster variable SSYT between the 2 clusters generated through the K-
Means process, for each of the Grassmannian datasets respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 In

er
tia

Figure 5. The elbow method for determining the optimum number of K-
Means clusters when clustering the C[Gr(3, 12)] r6 dataset with penalty
factor of 0.01, discouraging too many clusters.

in particular one which separates the SSYT which correspond to the cluster
variables.

Overall K-Means managed to distinguish Grassmannian CV datasets us-
ing the rank partitioning, corroborating the PCA results, however struggled
to separate the CV and NCV tableaux, further strengthening the successes
of the supervised ML methods in learning this.

4.5. NN Gradient Saliency

The most promising results of the ML analysis are that simple NN architec-
tures were able to determine whether a given SSYT corresponds to a cluster

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 822 — #26
✐

✐

✐

✐

✐

✐

822 Cheung, Dechant, He, Heyes, Hirst, and Li

(a) C[Gr(3, 12)], r ≤ 6 (b) C[Gr(4, 10)], r ≤ 6 (c) C[Gr(4, 12)], r ≤ 4

Figure 6. NN gradient saliency images representing the averaged absolute
values of the classification output gradients with respect to each of the re-
spective tableaux inputs, for each of the Grassmannians considered. Lighter
colours indicate the larger magnitude gradients, and hence the most domi-
nantly useful entries for learning.

variable or not. Determining this is not possible directly, and the cluster
variable and non-cluster variable datasets are certainly not distinguishable
by eye. Moreover, unsupervised methods were also unable to identify simple
structure which separates these datasets, strengthening further the perfor-
mance of these NNs.

To dissect this exceptional performance, the technique of gradient
saliency was used on the trained NNs to determine which parts of the
inputs most significantly contributed to the respective classification of a
tableaux throughout the test dataset. In this process, the gradient of the 0-
dimensional, single entry, binary output is taken with respect to each of the
input 24-dimensions, for all of the tableaux in the test dataset. These gradi-
ents are then averaged, absolute values taken, and plotted to provide a visual
representation of the more dominant features used by the NNs to perform
the classification. These images are shown for each of the binary classification
investigations performed between cluster variable and non-cluster variable
SSYT for each dataset in Figure 6. Note that since higher functionality was
required for the NNs to perform the saliency analysis, tensorflow [1] was
used to construct them (with the same hyperparameters as before).

In each of the images the lighter colours indicate the gradients with the
larger average absolute values over the test dataset. Perhaps as expected for
the C[Gr(3, 12)] dataset the bottom row has no dominant features as these
entries are all an artefact of padding, as is the same for the C[Gr(4, 12)] rank
4 data where the last two columns are padded. Interestingly though, in all
cases the central columns have equivalently negligible gradients, and hence
negligible effects on the learning.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 823 — #27
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 823

The most dominant features seem to be the top-right and bottom-left
entries, excluding the C[Gr(4, 12)] rank 4 and C[Gr(3, 12)] rank 6 padding
features. Hence the structure the NNs are using to discern whether a SSYT is
a cluster variable or not is likely almost entirely determined by these entries.
Some symbolic regression methods were implemented, using gplearn, to
attempt to identify an equation that may relate these specific entries to
the cluster variable prediction. However no suitable simple equation could
be found, and hence the NNs use of these entries to determine the cluster
variable nature of a generic tableaux in the Grassmannian is likely highly
complicated.

5. Conclusion

In this paper, high performance computing (HPC) is applied to calculate
cluster variables in Grassmannian cluster algebras C[Gr(k, n)]. We obtained
cluster variables in C[Gr(3, 12)] up to degree 6 (the corresponding semistan-
dard Young tableaux has at most 6 columns), in C[Gr(4, 10)] up to degree
6, and in C[Gr(4, 12)] up to degree 4. These cluster variables are computed
for the first time and they have applications from geometry, to algebra, and
to scattering amplitudes in physics [4, 20, 25, 28, 29]. Using these datasets,
we verified Conjectures 3.1 and 3.2.

Supervised MLmethods learnt to classify tableaux into each algebra with
accuracy > 0.99, using the simple rank structure easily extractable from
the data. These architectures then also learnt to identify cluster variable
SSYT from tableaux which were not cluster variables for each algebra to
accuracies ∼ 0.95. This strong performance was further supported by PCA
results showing the non-cluster variable data was representative of the true
cluster variable data in each case. PCA also indicated that rank was the most
dominant feature explaining data variation, due to the padding structure
it requires. Clustering results with K-Means near perfectly separated the
Grassmannians, but could also not differentiate the NCV tableaux, only
clustering according to the rank information.

The lack of linear (and non-linear) structure in the datasets for the un-
supervised methods to extract makes the supervised architecture even more
impressive, confirming the utility of these advanced computational meth-
ods in analysing Grassmannian tableaux. Through methods of NN gradient
saliency the dominant tableaux features used for learning were the last non-
trivial entry of the first column and first entry of the last non-trivial column,
and it is likely there is structure in these entries that strongly correlates with
a SSYT being a cluster variable.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 824 — #28
✐

✐

✐

✐

✐

✐

824 Cheung, Dechant, He, Heyes, Hirst, and Li

Acknowledgments

MWC would like to thank the Isaac Newton Institute for Mathematical
Sciences, Cambridge, for support and hospitality during the programme
‘Cluster algebras and representation theory’ where work on this paper was
undertaken. This work was supported by EPSRC grant no EP/R014604/1.
PPD is grateful to the London Mathematical Society for grants 42035 and
42111, and to the London Institute for Mathematical Sciences for its hospi-
tality. YHH would like to thank STFC for grant ST/J00037X/2. E. Heyes
would like to thank SMCSE at City, University of London for the PhD stu-
dentship, as well as the Jersey Government for a postgraduate grant. E. Hirst
would like to thank STFC for a PhD studentship. JRL is supported by the
Austrian Science Fund (FWF): Einzelprojekte P34602. The computational
results presented have been achieved in part using the Vienna Scientific Clus-
ter (VSC), and the City, University of London high performance computing
service (hyperion).

For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted Manuscript
version arising from this submission.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems (2015). Soft-
ware available from tensorflow.org.

[2] G. Arias-Tamargo, Y.-H. He, E. Heyes, E. Hirst, and D. Rodriguez-
Gomez, Brain webs for brane webs, Phys. Lett. B 833 (2022) 137376.

[3] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, J. Trnka,
and A. Postnikov, Grassmannian geometry of scattering amplitudes,
Cambridge University Press (2016).

[4] N. Arkani-Hamed, T. Lam, and M. Spradlin, Non-perturbative geome-

tries for planar N = 4 SYM amplitudes, J. High Energ. Phys. (2021),
no. 03, 65.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 825 — #29
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 825

[5] J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker, and Y. Xiao, Quiver

Mutations, Seiberg Duality and Machine Learning, Phys. Rev. D 102
(2020), no. 8, 086013.

[6] J. Bao, Y.-H. He, and E. Hirst, Neurons on Amoebae, J. Symb. Comput.
116 (2022), 1–38.

[7] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Ma-
jumder, Polytopes and machine learning, (2021).

[8] ———, Hilbert series, machine learning, and applications to physics,
Phys. Lett. B 827 (2022) 136966.

[9] K. Baur, D. Bogdanic, A. G. Elsener, and J.-R. Li, Rigid indecomposable

modules in Grassmannian cluster categories, (2020).

[10] P. Berglund, B. Campbell, and V. Jejjala, Machine learning Kreuzer-

Skarke Calabi-Yau threefolds, (2021).

[11] D. S. Berman, Y.-H. He, and E. Hirst, Machine learning Calabi-Yau

hypersurfaces, Phys. Rev. D 105 (2022), no. 6, 066002.

[12] J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson,Machine Learn-

ing in the String Landscape, JHEP 09 (2017) 157.

[13] W. Chang, B. Duan, C. Fraser, and J.-R. Li, Quantum affine algebras

and Grassmannians, Mathematische Zeitschrift 296 (2020), no. 3, 1539–
1583.

[14] V. Chari and A. Pressley, Factorization of representations of quantum

affine algebras, Modular Interfaces (Riverside CA 1995), AMS/IP Stud.
Adv. Math 4 (1997), 33–40.

[15] V. Chari, A. Pressley, et al., A Guide to Quantum Groups, Cambridge
University Press (1995).

[16] S. Chen, Y.-H. He, E. Hirst, A. Nestor, and A. Zahabi, Mahler measur-

ing the genetic code of Amoebae, (2022).

[17] A. Cole, S. Krippendorf, A. Schachner, and G. Shiu, Probing the struc-

ture of string theory vacua with genetic algorithms and reinforcement

learning, in 35th Conference on Neural Information Processing Systems,
(2021).

[18] P.-P. Dechant, Y.-H. He, E. Heyes, and E. Hirst, Cluster algebras: net-

work science and machine learning, (2022).

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 826 — #30
✐

✐

✐

✐

✐

✐

826 Cheung, Dechant, He, Heyes, Hirst, and Li

[19] L. J. Dixon, J. Drummond, T. Harrington, A. J. McLeod, G. Pap-
athanasiou, and S. Marcus, Heptagons from the Steinmann cluster boot-

strap, J. High Energ. Phys. (2017), no. 02, 137.

[20] J. Drummond, J. Foster, Ö. Gürdoğan, and C. Kalousios, Tropical

Grassmannians, cluster algebras and scattering amplitudes, Journal of
High Energy Physics 2020 (2020), no. 4, 146.

[21] S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, Journal of
the American Mathematical Society 15 (2002), no. 2, 497–529.

[22] S. Franco, D. Galloni, and A. Mariotti, Bipartite field theories, cluster

algebras and the Grassmannian, J. Phys. A 47 (2014), no. 47, 474004.

[23] S. Franco, A. Hanany, Y.-H. He, and P. Kazakopoulos, Duality walls,

duality trees and fractional branes, (2003).

[24] S. Franco and G. Musiker, Higher cluster categories and QFT dualities,
Phys. Rev. D 98 (2018), no. 4, 046021.

[25] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich,
Motivic amplitudes and cluster coordinates, Journal of High Energy
Physics 2014 (2014), no. 1, 91.

[26] Y.-H. He, Deep-learning the landscape, (2017).

[27] Y.-H. He, E. Hirst, and T. Peterken, Machine-learning dessins

d’enfants: explorations via modular and Seiberg–Witten curves, J. Phys.
A 54 (2021), no. 7, 075401.

[28] N. Henke and G. Papathanasiou, How tropical are seven-and eight-

particle amplitudes, Journal of High Energy Physics 2020 (2020), no. 8,
1–50.

[29] ———, Singularities of eight- and nine-particle amplitudes from cluster

algebras and tropical geometry, Journal of High Energy Physics 2021
(2021), no. 7, 1–60.

[30] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine al-

gebras, Duke Mathematical Journal 154 (2010), no. 2, 265–341.

[31] E. Hirst, Machine learning for Hilbert series, in Nankai Symposium on
Mathematical Dialogues: In Celebration of S. S. Chern’s 110th Anniver-
sary, (2022).

[32] V. Jejjala, D. K. Mayorga Pena, and C. Mishra, Neural network ap-

proximations for Calabi-Yau metrics, (2020).

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 827 — #31
✐

✐

✐

✐

✐

✐

Clustering cluster algebras with clusters 827

[33] B. T. Jensen, A. D. King, and X. Su, A categorification of Grassmannian

cluster algebras, Proceedings of the London Mathematical Society 113
(2016), no. 2, 185–212.

[34] D. Krefl and R.-K. Seong, Machine learning of Calabi-Yau volumes,
Phys. Rev. D 96 (2017), no. 6, 066014.

[35] B. Leclerc, Imaginary vectors in the dual canonical basis of Uq(n),
(2002).

[36] M. Manko, An upper bound on the critical volume in a class of toric

Sasaki-Einstein manifolds, (2022).

[37] G. Musiker and C. Stump, A compendium on the cluster algebra and

quiver package in Sage, (2011).

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal of
Machine Learning Research 12 (2011), 2825–2830.

[39] F. Ruehle, Evolving neural networks with genetic algorithms to study

the String Landscape, JHEP 2017 (2017), no. 08, 038.

[40] J. S. Scott, Grassmannians and cluster algebras, Proceedings of the
London Mathematical Society 92 (2006), no. 2, 345–380.

✐

✐

“5-Li” — 2024/5/21 — 16:06 — page 828 — #32
✐

✐

✐

✐

✐

✐

828 Cheung, Dechant, He, Heyes, Hirst, and Li

School of Mathematics, Kavli IPMU (WPI), UTIAS

The University of Tokyo, Kashiwa, Chiba, 277-8583, Japan

E-mail address: manwai.cheung@ipmu.jp

School of Mathematics, University of Leeds

Leeds, LS2 9JT, UK

Department of Mathematics, University of York

York, YO10 5DD, UK

York Cross-disciplinary Centre for Systems Analysis

University of York, York, YO10 5DD, UK

E-mail address: p.p.dechant@leeds.ac.uk

London Institute for Mathematical Sciences, Royal Institution

London, W1S 4BS, UK

Department of Mathematics, City, University of London

London, EC1V 0HB, UK

Merton College, University of Oxford

Oxford, OX1 4JD, UK

School of Physics, Nankai University

Tianjin, 300071, P. R. China

E-mail address: hey@maths.ox.ac.uk

Department of Mathematics, City, University of London

London, EC1V 0HB, UK

London Institute for Mathematical Sciences, Royal Institution

London, W1S 4BS, UK

E-mail address: elli.heyes@city.ac.uk

Department of Mathematics, City, University of London

London, EC1V 0HB, UK

London Institute for Mathematical Sciences, Royal Institution

London, W1S 4BS, UK

E-mail address: edward.hirst@city.ac.uk

Faculty of Mathematics, University of Vienna

Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

E-mail address: lijr07@gmail.com

	Introduction
	Grassmannian cluster algebras
	Cluster variables in Grassmannian cluster algebras
	Machine Learning
	Conclusion
	Acknowledgments
	References

