
When are cellular automata random?

J. B. Coe13, S. E. Ahnert4, and T. M. A. Fink123

1INSERM U900 and 2CNRS UMR144, Curie Institute, Paris F-75248, France
3Ecole des Mines de Paris, ParisTech, Fontainebleau, F-77300 France and

4Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE, UK

A random cellular automaton is one in which a cell’s behaviour is independent of its previous
states. Analytical conditions for the existence of random cellular automata are derived and we
find that a multitude of non-trivial random cellular automata exist. We develop an indicator vari-
able formalism to further investigate these random automata and confirm analytical results with
simulation.

Introduction

A cellular automaton is a collection of cells, each of
which is in one of a finite number of states. The cells’
states are updated according to some local rules which
take into account the state of the cell and the states of
its neighbours. For instance: a two dimensional grid with
two states per cell is used in Conway’s Game of Life in
which each cell is alive or dead and transition rules are in-
tended to mimick the effects of birth, death from isolation
and death from overcrowding [1]. Cellular automata have
attracted attention from the physics community as they
are an appealing modelling tool for any process driven
by local interactions.

Cellular automata have been used to model a wide
range of physical phenomena including: traffic flow [2–
8]; disease epidemics [9, 10]; stochastic growth [11];
predator-prey dynamics [12, 13]; invasion of populations
[14]; earthquakes [15] and dynamics of stock markets [16].

Analytical work has been fruitful in classifying be-
haviour and studying properties of specific forms. Wol-
fram exhaustively catalogued and classified behaviour of
simple deterministic automata [17, 18]. Phase diagrams
and critical exponents have been evaluated for automata
with absorbing states [19–23]. Certain probabilistic au-
tomata have been shown to fall into the same universality
class as directed percolation [24, 25]. Coarse-graining has
been shown to predict the emergence of large scale prop-
erties even for computationally irreducible systems [26].
Fuks et. al. identified conservative automata in which the
number of coloured cells remains constant [27–29].

Classification of rules is of fundamental importance
in any broad analytical treatement of cellular automata.
Random behaviour is among the most elementary forms
of behaviour possible and must be firmly understood if a
general theory of structure — deviation from randomness
— is to be developed.

In deterministic cellular automata the update rules
have no probabilistic component: for a given configu-
ration of cell states the updated cell state is always the
same. In probabilistic cellular automata, local rules may
have a probabilistic element to them: rather than dictat-
ing the state of an updated cell, the rule gives the prob-

FIG. 1: The eight possible neighbourhoods for a simple cellu-
lar automaton are numbered as illustrated. The probability
that the neighbourhood numbered i produces a coloured cell
is denoted by ai.

ability that an updated cell will be in each of a number
of states.

The simplest cellular automaton is a line of cells, each
of which is in one of two states: coloured or uncoloured.
The cells are updated simultaneously; the updated state
of a cell depends on its state and the states of its near-
est neighbours. There are eight possible configurations
for the states of a cell and its nearest neighbours; this
gives eight different update rules which we label as ai.
The configurations and rules are numbered according to
Fig. 1.

We denote the state of the central cell by xc: when
the central cell is coloured xc = 1, when it is uncoloured
xc = 0. The left neighbour is denoted by xl and the right
neighbour by xr. Uncoloured cells are denoted by x̄l, x̄c

and x̄r (x̄i = 1 − xi). The state of the central cell after
an update, x′

c is given by

P (x′
c = 1) = a0x̄lx̄cx̄r + a1x̄lx̄cxr (1)

+ a2x̄lxcx̄r + a3x̄lxcxr

+ a4xlx̄cx̄r + a5xlx̄cxr

+ a6xlxcx̄r + a7xlxcxr.

In this paper we present the conditions for random
cellular automata (which we derive in a later section).

We first solve these conditions over the space of de-
terministic cellular automata. We find that of the 256
simple cellular automata, 28 of them exhibit random be-
haviour. In all but two of them, cells are coloured with
probability 1

2
. Ten of these random automata are not re-

lated by symmetry (reflection or inversion), all of which
we illustrate in fig. 2.

Second, we solve the conditions for random behaviour
for probabilistic cellular automata. Within the eight-
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cube — the corners of which are the 256 deterministic
cellular automata — we find an expression for the density
of random cellular automata and find two disjoint five-
volumes both of which have volume 0.12. We give exam-
ples of random probabilistic cellular automata through
illustrations.

In the third section we derive the conditions for ran-
domness by applying an indicator variable fromalism to
nearest neighbour one-dimensional cellular automata.

We employ indicator variables in the fourth section to
study correlation current which manifests itself as a visu-
ally apparent flow in many of the random automata. We
develop an analytical expression for correlation current
and compare predictions with simulation.

In the fifth section we show that the total randomness
in random cellular automata, must come from either of
two sources: spatial randomness in the initial conditions
which is converted to temporal randomness; or random-
ness injected directly through probabilistic update rules.
We derive explicit expressions to calculate these quanti-
ties for any random celullar automaton.

Random cellular automata

In a random cellular automaton the probability of a
cell being coloured is independent of all of its previous
states: all cells are taken to be coloured with probability
p. There are two sets of criteria on the rules; satisfying
either of these produces random behaviour:

(1 − p)a0 + pa4 = p, (1 − p)a1 + pa5 = p, (2)

(1 − p)a2 + pa6 = p, (1 − p)a3 + pa7 = p;

(1 − p)a0 + pa1 = p, (1 − p)a2 + pa3 = p, (3)

(1 − p)a4 + pa5 = p, (1 − p)a6 + pa7 = p.

Note that these conditions have certain symmetry prop-
erties. Switching over left- and right-handed rules turns
one set of conditions into the other. State-inversion
(where coloured cells and uncoloured cells are switched
round) leaves both sets of conditions unchanged.

We examine the behaviour of random automata for
both deterministic and probabilistic rules. Since condi-
tions have left-right reflective symmetry, we only look at
examples for the second set of conditions, (3).

For a random cellular automaton which satisfies (3),
the state of the central cell after an update is given by

P (x′
c = 1) = xr + (x̄r −

(

1 − p

p

)

xr) (4)

×(a0x̄lx̄c + a2x̄lxc + a4xlx̄c + a6xlxc).

Wolf. a7 . . . a0 x′

c R I R&I

85 01010101 r̄ 15 85 15
86 01010110 l̄c̄r + lr̄ + cr̄ 30 149 135
89 01011001 l̄rc + c̄r̄ + lr̄ 75 101 45
90 01011010 lr̄ + r̄l 90 165 165
102 01100110 cr̄ + c̄r 60 153 195
105 01101001 l̄c̄r̄ + lcr̄ + lc̄r + l̄cr 105 105 105
106 01101010 lcr̄ + c̄r + l̄r 120 169 225
150 10010110 lc̄r̄ + l̄cr̄ + l̄c̄r + lcr 150 150 150
154 10011010 lc̄r̄ + l̄r + lr 210 166 180
170 10101010 r 240 170 240

TABLE I: The 10 sets of rules which give random behaviour
along with their symmetric partners. The rules themselves are
shown along with a simplified boolean expression for the up-
dated state of the central cell. Wolfram numbers and Wolfram
numbers of symmetric partners are given. The symmetry op-
erations considered are reflection (R), state-inversion (I) and
both (R&I). The value of p for all rule sets is 0.5 except for
rule set 170, for which p can take any value.

Random deterministic automata

For determinsitic cellular automata all the rules must
be either zero or one. We are not interested by trivial
solutions in which all cells are coloured (p = 1) or un-
coloured (p = 0); this imposes limits on possible choices
of p. For (3) this means that if a2j = 0 then a2j+1 = 1
and if a2j = 1 then a2j+1 = 0. One choice of rules, where
all a2j = 0, gives random behaviour for arbitrary p, all
other choices give p = 1

2
. There are 16 possible choices

of free rules which give random behaviour, though some
are related by symmetry.

The left-handed conditions provide an equal number of
possible rule sets leading to random behaviour some of
which are already given by the right-handed conditions.
There are 4 possible choices which satisfy both left- and
right-handed conditions for randomness giving a total of
28 distinct random deterministic cellular automata.

Wolfram assigns deterministic automata numbers ac-
cording to the values of the rules [17]. These Wolfram

numbers can be obtained by evaluating
∑7

0
ai2

i. Of the
28 rule sets which give random behaviour when symmet-
ric partners (either left-right or inversion symmetries) are
discounted, there are 10 distinct rule sets. We list these
rule sets and their symmetries in table I. Several of these
automata belong to Wolfram’s classes 3 and 4 which ex-
hibit the most complex kinds of behaviour [18].

Of the 10 rule sets, some can be qualitatively ex-
plained. 170 copies the right site to itself, propogating
the initial sequence along space and time. 85 copies the
conjugate of the right site to itself. 90 is a nand gate
on the left and right sites, and 102 is a nand gate in
the left and centre sites. 105 gives a coloured cell if its
neighbourhood contains one or three zeros. 150 gives a
coloured cell if its neighbourhood contains none or two
zeros.
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FIG. 2: Simulation-generated pictures for the 10 right-handed random deterministic automata not related to one another by
symmetry. Space runs from left to right, time from top to bottom. From left to right, starting at the top, the Wolfram numbers
are: 85, 86, 89, 90, 102, 105, 106, 150, 154 and 170.

Random probabilistic automata

When the rules are no longer constrained to be zero
or one we cannot count configurations so instead we con-
sider the density of random states. As pairs of rules are
related to one another by the conditions for random be-
haviour, there are four free rules and a probability of a
cell being coloured, p, to choose. If these five free pa-
rameters were each randomly picked from the interval
zero to one it would not necessarily result in random be-
haviour. The non-free rules must also lie between zero
and one which may not be compatible with (2) and (3),
the conditions for random behaviour.

Within the five-volume marked out by the free rules
and p, there is a density of random configurations given
by

dV5 =

(

p

1 − p

)4

dp, p ≤
1

2
, (5)

dV5 =

(

1 − p

p

)4

dp, p >
1

2
.

Integrating over all possible values of p, we find

V5 = 17/3 − 8 ln 2 ≃ 0.12. (6)

Within the five-volume, 12% of possible selections of free
rules and colouring probabilities will lead to random be-
haviour. A second five-volume exists when the other set
of conditions is satisfied. Note that the five-volumes that
correspond to different sets of conditions are not the same
(different rules are free) and have zero intersection in five
dimensions.

Satisfying both sets of conditions gives a three-volume
within which 23% of randomly picked points correspond
to random behaviour.

Imposing left-right symmetry by satisfying both sets
of conditions, (2) and (3), yields

P (x′
c = 1) = 1 − x̄lx̄r − rxlxr (7)

+(a0x̄c + a2xc)(x̄r − rxr)(x̄l − rxl),

which is symmetric under interchange of xl and xr as
expected. In this expression the state of the central cell
and its left and right neighbours are all important.

Some illustrative examples, all with p = 0.5, of random
probabilistic cellular automata are shown in Fig. 3. A
Java program [31] can be freely downloaded and used to
generate figures for probabilistic cellular automata.

Indicator variables

Indicator variables are taken from the theory of ran-
dom processes and have been used to solve the asym-
metric exclusion process [32]. In a powerful formalism in
population genetics, indicator variables are used to keep
track of genes and correlations between genes [33]. Here
we make use of indicator variables to represent the state
of a cell and use cancellation properties to simplify ex-
pressions for high-order correlations.

Every cell in a one-dimensional cellular automaton can
be assigned a unique integer index increasing from left to
right. We represent the state of each cell by an indicator
variable τi, where i is the index of the site. The indicator
variable takes the value 1 if a site is coloured and 0 if it
is not. For notational brevity we define an anti-indicator
τ̄i which shows if a cell is uncoloured: τ̄i = 1 − τi.

If pi is the probability that cell i is coloured, then the
expected value of the indicator variable τi is pi. We rep-
resent this as

E[τi] = pi. (8)

Several identities follow from the above definitions and
can be used to simplify complicated expressions in which
indicator variables appear:

E[τiτi] = E[τi]; E[τ̄iτ̄i] = E[τ̄i]; E[τiτ̄i] = 0. (9)

Correlations between indicators and anti-indicators
can always be expressed as correlations between indica-
tors by exploiting the identity τ̄i = 1 − τi:

E[τ̄iτ̄j ] = 1 − E[τi] − E[τj ] + E[τiτj ] (10)

E[τiτ̄j ] = E[τi] − E[τiτj ]. (11)
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FIG. 3: Simulation-generated pictures for some representative samples of random probabilistic cellular automata. In all of
these automata the probability that a cell is couloured is 1

2
. The rules, from left to right, from a7 to a0 are given at the end of

this manuscript [30].

For an unknown configuration of cells, the probability
that the cell with index 1 is coloured after an update
follows from the definitions of the update rules: each
possible neighbourhood can be described by a three-fold
product of indicator variables; each neighbourhood has a
probability ai of producing a coloured site after an up-
date. We write the indicator variable for cell i after an
update as τ ′

i .

E[τ ′
1] = a0E[τ̄0τ̄1τ̄2] + a1E[τ̄0τ̄1τ2] (12)

+ a2E[τ̄0τ1τ̄2] + a3E[τ̄0τ1τ2]

+ a4E[τ0τ̄1τ̄2] + a5E[τ0τ̄1τ2]

+ a6E[τ0τ1τ̄2] + a7E[τ0τ1τ2].

Without assumptions this cannot be simplified.

Conditions for random behaviour

A random configuration is one in which the probability
of any given cell being coloured is uniformly and indepen-
dently distributed through time. As the probability of a
cell being coloured can be expressed in terms of neigh-
bouring cells being coloured in the previous time step
(12), for a cell to be independent of its previous states
requires inter-cell independence at any time step. Single-
cell temporal independence requires system wide spatial
independence at any timestep. If the cells are coloured
with probability p, a random configuration can be ex-
pressed in terms of the indicator algebra as

E[τ ′
i ] = p, (13)

E

[

∏

i∈S

τ ′
i

]

=
∏

i∈S

E[τ ′
i ]. (14)

The first condition, (13), can be written in terms of
indicator variables and simplified using (14). This results
in a polynomial in p.

p = a0q
3 + a1pq2 + a2pq2 + a3p

2q (15)

+a4pq2 + a5p
2q + a6p

2q + a7p
3,

where q = 1 − p. While this can be satisfied for many
choices of ai and p, the second condition (14) is much
stricter and any set of rules satisfying (14) will satisfy
this polynomial.

To satisfy (14) no inter-cell correlations can exist for
any possible set of cells. For certain choices of ai, larger
correlation terms can be expressed in terms of shorter
ones: repeating this procedure reduces all correlation
terms to products of single cell expectations. This re-
duction of correlation terms can be performed in one of
two ways:

E

[

∏

i∈S

τi

]

= E[τ0]E





∏

i∈S\{0}

τi



 , (16)

E

[

∏

i∈S

τi

]

= E





∏

i∈S\{N}

τi



 E[τN ]. (17)

where N and 0 have been chosen, without loss of gener-
ality, to be the largest and smallest indices in the set S.
We label S without the index 0 as S\{0} and S without
the index N as S\{N}. We refer to removal of the small-
est index as left-handed reduction and removal of the
largest index as right-handed reduction as the removed
index corresponds to the right-most or left-most cell in
the set.

For reduction of a correlation, the most restrictive set
of conditions exists when the index to be removed from
the set is among three neighbouring cells. Adding further
cells to the set will not introduce more conditions as there
is no overlap between the neighbourhoods of the cell to
be removed from the set and any other cells that may be
added. As reduction can be performed from the left or
right, there are two possible choices

E[τ ′
0τ

′
1τ

′
2] = E[τ ′

0]E[τ ′
1τ

′
2], (18)

or

E[τ ′
0τ

′
1τ

′
2] = E[τ ′

0τ
′
1]E[τ ′

2]. (19)

Substituting in indicator variable expressions for all of
the τ ′

i into these two expressions leads directly to (2)
and (3), the conditions for random behaviour.

Correlation current

Some of the random automata we have seen show a flow
of some sort. Rather than injecting randomness through
probabilistic rules, rule 170 copies the state of an adjacent
cell which is guaranteed to be random and independent
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FIG. 4: Measurements of correlation current each taken from
100 iterations of a 105 cell cellular automata. The rule sets
used are the same as those used to generate Fig. 3. Simulation
results are represented by points and predictions by the dotted
lines.

of the history of the updated cell. Randomness requires
that a cell’s state is independent of its previous states
so this copying is allowed. The flow seen in many of the
automata can be quantified by defining a spatio-temporal
correlation between an updated cell and its left- or right-
sided neighbour before the update. We define this as
correlation current.

The magnitude of right-handed flow is given by

E[τ0τ
′
1] − p2 = (a4 − p)p(1 − p)2 + (a5 − p)p2(1 − p)

+ (a6 − p)p2(1 − p) + (a7 − p)p3, (20)

and left-handed by

E[τ1τ
′
0] − p2 = (a1 − p)p(1 − p)2 + (a3 − p)p2(1 − p)

+ (a5 − p)p2(1 − p) + (a7 − p)p3. (21)

Correlation current can be left- or right-handed de-
pending on which neighbour is considered, and can be
positive or negative. The sign and direction are uncon-
nected, a negative right-handed correlation current and a
positive left-handed correlation current are not the same
thing. A negative correlation current is anti-correlation
a positive one is correlation.

Random cellular automata permit right-handed cor-
relation current or left-handed correlation current, but
not both. Satisfying both sets of conditions, (2) and
(3), means that no correlation current exists. Analyti-
cal predictions for correlation current are compared with
simulation results in Fig. 4.

Information flow

The information flow through a channel with input Z
and output Y is given by the mutual information I(Z;Y ):

I(Z;Y ) = H(Y ) − H(Y |Z). (22)

Where H(Z) is the Shannon entropy of the random vari-
able Z and the conditional entropy H(Y |Z) is given by
H(Y |Z) = H(Z, Y ) − H(Z) [34].

We consider the eight possible cellular automata neigh-
bourhoods as our Z. We label them in a similar manner
to the rules so that z0 = 000, z1 = 001, ..., z7 = 111. In
random cellular automata, the probability of one of these
neighbourhoods occuring is given by P (zi) = pwiq3−wi

where wi is the number of coloured cells zi and q = 1−p.

In neighbourhood i, a coloured cell is produced with
probability ai and an uncoloured cell with probability
1 − ai, which we denote by āi. The information flow
F (p,a) for a random automaton is given by:

F (p,a) =
∑

i

P (zi)

(

ai log2

ai

p
+ āi log2

āi

q

)

. (23)

We can write the total entropy of the system as

Htotal = Hflow + Hrules, (24)

where the various entropies are given by:

Htotal = −p log2 p − q log2 q, (25)

Hflow = F (p,a), (26)

Hrules =
∑

i

−p(zi)(ai log2 ai + āi log2 āi). (27)

This relationship tells us how much of the total entropy
(Htotal) at a particular cellular automata site arises from
the probabilistic nature of the set of rules (Hrules) and
how much is due to information flow from the neighbour-
ing cells (Hflow).

Conclusion

We have presented analytical conditions for the exis-
tence of random cellular automata with both probabilis-
tic and deterministic rules. The techniques developed,
in addition to giving a deeper understanding of random
behaviour, can be more broadly applied to analytical so-
lution of cellular automata models.

Randomness is equivalent to the mean-field approxi-
mation employed by [17] and [19] which was extended to
a broader approximation known as local structure theory
[35]. Within limits, both approximations have had con-
siderable success. Analytical limits on the validity of ap-
proximation will allow more sophisticated approximation
techniques to be developed and applied appropriately.

The indicator variable approach used is readily gen-
eralisable to larger neighbourhoods and dimensionalities
allowing the techniques employed in this paper to be used
to find conditions for random behaviour in larger, more
complex automata.
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