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Abstract

A system of elements that interact or regulate each other can be represented by a mathematical object called a network.
While network analysis has been successfully applied to high-throughput biological systems, less has been done regarding
their application in more applied fields of medicine; here we show an application based on standard medical diagnostic
data. We apply network analysis to Class III malocclusion, one of the most difficult to understand and treat orofacial
anomaly. We hypothesize that different interactions of the skeletal components can contribute to pathological
disequilibrium; in order to test this hypothesis, we apply network analysis to 532 Class III young female patients. The
topology of the Class III malocclusion obtained by network analysis shows a strong co-occurrence of abnormal skeletal
features. The pattern of these occurrences influences the vertical and horizontal balance of disharmony in skeletal form and
position. Patients with more unbalanced orthodontic phenotypes show preponderance of the pathological skeletal nodes
and minor relevance of adaptive dentoalveolar equilibrating nodes. Furthermore, by applying Power Graphs analysis we
identify some functional modules among orthodontic nodes. These modules correspond to groups of tightly inter-related
features and presumably constitute the key regulators of plasticity and the sites of unbalance of the growing dentofacial
Class III system. The data of the present study show that, in their most basic abstraction level, the orofacial characteristics
can be represented as graphs using nodes to represent orthodontic characteristics, and edges to represent their various
types of interactions. The applications of this mathematical model could improve the interpretation of the quantitative,
patient-specific information, and help to better targeting therapy. Last but not least, the methodology we have applied in
analyzing orthodontic features can be applied easily to other fields of the medical science.
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Introduction

A general way to understand complex biological systems is to

represent them using the simplest units of architecture. Such

patterns of local and global interconnection are called networks. A

network, or in more formal mathematical language, a graph, is a

simplified representation that reduces a system to an abstract

structure capturing the basis of connection pattern of the system

[1,2]. The simplest possible network representation reduces the

system’s elements to nodes (‘‘vertices’’) and their pairwise relation-

ships to links (‘‘edges’’) connecting pairs of nodes. Links represent

functional interactions or anatomical relationships between the

nodes, such as ‘‘catalyze’’, or ‘‘binds to’’, or ‘‘is converted to’’, or

‘‘shift’’ [3,4]. The network’s inference and analysis refers to

information on the identity and the state of the elements of a

system to their functional relationships and to the extraction of

biological insight and predictions. A multitude of studies have

shown that meaningful biological properties can be extracted by

network analysis [5,6].

An important advancement in network science has been the

possibility of identifying and localizing sub-networks of functional

modules (motifs) in complex systems [7]. The decomposition of

large networks into distinct components, or modules, has to be

regarded as a major approach to deal with the complexity of large

biological networks. A motif refers to a group of physically or

functionally connected components (nodes in graph) that work

together to achieve the desired biological function. These

organized sets of interactions are capable of local ordering,

function, process information, and presumably act as regulators of

growth and development in determining auxologic choices

between homeostasis and plasticity [8–10].

Already applied in biomedical areas such as genetics, molecular

biology, microbiology, and epidemiology, networks often have

revealed surprising and unanticipated biological and functional
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insights, delineating the possibility of a new, holistic approach in

scientific investigation. This approach ideally aims to define and

analyze the interrelationship of all the elements in a biomedical

system in order to understand how a system works in ever

changing conditions (a new discipline called ‘‘Systems Biology’’) [11].

An apparently more modest but not less important task is to apply

such an approach to the ordinary data sets used in medical

practice; in particular, we will produce an example based on

standard orthodontic data.

Network analysis has been applied recently to orthodontics to

detect and visualize the most interconnected clinical, radiographic,

and functional data pertaining to the orofacial system [12]. In

particular, by considering phenotypic, functional, and radiograph-

ic characteristics it has been shown that different kinds of

dentofacial malocclusions correspond to different network struc-

tures (a malocclusion is a misalignment of teeth or incorrect

relation between the teeth of the two dental arches).

During the diagnostic process to establish the objectives,

strategies, priorities and sequences of treatment, the orthodontist

has to identify and locate the critical points of malocclusion [13].

Among malocclusions, the more severe is the so-called Class III

malocclusion, often associated with the protrusion of the lower

dental arch (Fig. 1). Class III malocclusion in growing subjects is

characterized by a complex combinations of skeletal features (e.g. a

shorter and more retrusive maxilla, an excess of lower anterior

face height, a shorter anterior cranial base length, a more acute

cranial base angle) with multiple dentoalveolar compensatory

processes (e.g. proclined maxillary incisors, retroclined mandibular

incisors) [14–18]. The management of the architectural and

structural Class III network parameters forces the orthodontist to

collect clinical and radiographic data sets on craniofacial

characteristics, growth, and function. The paradox of daily

orthodontic practice is that these data sets may bring more

disorientation than understanding of the main problem of the

patient [19]. With the aim of identifying pathognomonic traits of

severity for Class III malocclusion, Freer [20] found that

labiolingual spread and overjet were the most critical variables,

while Stellzig-Eisenhauer et al [19] focused attention on the

individualized combination of palatal plane angle, inclination of

lower incisors, and Wits appraisal, but no morphologic trait was

shown to be indicative of potential Class III development [20–23].

The craniofacial region can be regarded as a complex system

that grows and remodels itself following an intricate network of

auxologic forces, distortive processes and/or compensatory

mechanisms [18]. Complex systems are dynamic systems that

present with the capacity of self-organizing a large number of

interacting elements in a non-linear fashion (e.g. forests, ants, flocks

of birds, financial markets, the immune system) [3]. In order to

understand the function of a biological organization it often is

beneficial to conceptualize it as a systems of interacting elements

and to define the dynamic behavior of these components [1,11].

The global behavior of complex systems cannot be explained

solely on the basis of a single physical law, or the behavior of

individual elements. The cooperation of the elements determines

the overall behavior and provides properties that can be totally

unrelated to the individual components of the system (‘‘more is

different’’). The system must be analyzed in its entirety, as a

coherent unit: it is pattern that matters [24,25].

The aim of this study is to show how ‘‘network thinking’’ and

network modeling leads to a systemic analysis of standard

diagnostic data under a different perspective that digs out

previously undiscovered information. In particular, we will identify

the physiological and/or pathological characteristics in a large

cross-sectional sample of 532 female Class III subjects on the basis

of a model derived from network analysis.

Methods

Objectives
The aim of this study is to apply conjunctly statistical analysis

with network tools and methodologies to Class III malocclusion

features’ longitudinal (i.e. time varying) datasets in order to

uncover the systemic importance of such features and to

Figure 1. Class III malocclusion with protrusion of the lower
dental arch.
doi:10.1371/journal.pone.0044521.g001

Figure 2. Cephalogram reference points. Most of the cephalo-
metric landmarks are either angles or normalized linear distances. As an
example, SN-GoGn is an angle between anterior cranial base and
mandibular plane. The 21 cephalometric landmarks analyzed in the
paper correspond to the standard set of features analyzed in
orthodontics (see Table 1).
doi:10.1371/journal.pone.0044521.g002
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individuate the possible emergence of features’ subset driving the

orofacial development of Class III malocclusion

Participants
This study analyzed the pretreatment lateral cephalometric

records of 532 untreated Class III Caucasian female patients

collected from the Department of Orthodontics of the University

of Florence, Italy, and from the Graduate Orthodontic Program at

the University of Michigan, Ann Arbor, Michigan. All these

subjects was enrolled previously in large descriptive estimates of

craniofacial growth in Class III malocclusion [14,23,26]. The age

range was between 6 years 4 months to 17 years 3 months.

To be included in this study, the female patients had to satisfy

all of the following inclusion criteria:

– Caucasian ancestry;

– no orthopedic/orthodontic treatment prior to cephalogram;

– diagnosis of Class III malocclusion based on anterior cross-bite,

accentuated mesial step relationships of the primary second

molars, permanent first molar relationship of at least one half

cusp Class III;

– no congenitally missing or extracted teeth.

Description of Procedures or Investigations undertaken
The subjects were examined separately in four age groups:

Group G1 (from 7 to 10 years) 240 subjects, Group G2 (from11 to

12 years) 89 subjects, Group G3 (from 13 to 14 years) 105 subjects,

and Group G4 (from 15 to 17 years) 98 subjects.

The cephalometric analysis required the digitization of 21

landmarks on the tracing of each cephalogram (Fig. 2). The error

of the method for the cephalometric measurements was evaluated

by repeating the measures in 100 randomly selected cephalo-

grams. Error was on average 0.6u for angular measures and

0.9 mm for linear measures.

Ethics
All data used in this study have been previously published as

referenced in the methods section. Written informed consent was

obtained from the patients’ parents as part of their orthodontic

Figure 3. Graph obtained from the cephalometric data of 240 female Class III patients between 7 and 10 years of age (group G1).
The highly connected nodes N-Me (anterior facial height) and SN-GoGn (divergence between the anterior cranial base and mandibular body) work as
bridges, i.e. they connect separate sub-graphs. The graph highlights a division between the cephalometric parameters: linear (upper left nodes: Go-
Pg, Co-A, S-N, Co-Gn, Co-Gn, N-Me), angular parameters (upper right: PP-PM, SN-Go-Gn, Ar-Go-Me) and adaptive dentoalveolar parameters (lower left:
IMPA; FMIA, Interincisal).
doi:10.1371/journal.pone.0044521.g003
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treatment. The approval of an Ethical Committee was not sought

as all data analysed were collected as part of routine orthodontic

pre-treatment diagnosis.

Statistical methods
We analize the correlation matrices among the 21 cephalo-

graphic landmarks considered by using complex netwoks. First we

calculate (using KNIME [27]) for each pair of features their

sample Pearson correlation coefficient rxy = (,xy.-,x.,y.)/sx

sy, where x,y are the numerical values of the landmarks, ,….

indicates sample means and sx, sy are their sample standard

deviations. Each rxy can be considered as the weight of a link

between x and y; the associated network therefore is a complete

graph, i.e. a network where every node is connected to every other

node. Such correlation graphs already have been considered in

other applications of network theory, like finance and genomics

[28,29]; in order to dig out the information present in the whole

correlation matrix and sort out relevant features with their global

correlations, some filtering has to be applied. Our choice is to use a

cutoff to correlation values in order to consider only the most

significant correlations [12]; therefore we consider two features

(the nodes of our graphs) to be linked if |rxy|.0.40. Notice that at

difference with most previous studies in networks, we do not

discard negative correlations: this is a critical point when analyzing

any complex systems where important relations, as a negative

feedback, naturally would show up as significantly high negative

correlations.

Networks have been visualized using the software yEd [30] with

the standard layout; the choice of filtering at |rxy|.0.40 reduces

the complexity of the system and permitted the identification of

many characteristics just by visual inspection. In particular, it is

very easy to identify bridge nodes, i.e. nodes whose absence would

split the graphs in two or more separate parts. Bridge nodes are

important both because they allow to detect separate subsystems

(sets of highly correlated features) and because they represent the

connection among such subsystems.

Furthermore, to investigate the presence of functional modules,

we have searched for motifs in our filtered networks. Motifs

searches are potentially valuable tools to predict unknown

interactions involving 3–5 nodes (rarely more than 6). These

organized sets of interactions are capable of higher order functions

(such as amplification), and hence probably represent the

functional capabilities within the network. They provide balance

between modules through signaling gates (i.e. negative feed-

forward motifs), favoring plasticity (open-gate configuration), or

homeostasis (closed- gate configuration). We have focused on the

presence of clicques (subsets where each of node is connected to

every other node) as they naturally represent the presence of a

Figure 4. Graph obtained from cephalometric data of 90 female Class III patients between 11 years and 12 years of age (group G2).
The graph is composed by two characterized groups: structural (upper group) and dentoalveolar adaptive (lower group of four nodes).
doi:10.1371/journal.pone.0044521.g004
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subsystem acting as a whole: in fact, every feature in such a

subsystem is interrelated. To individuate the presence of clicques,

we have employed the Power Graphs plugin [31] in the software

Cytoscape [32].

Results

Figures 3, 4, 5, 6 illustrate the correlation networks of the

cephalometric characteristics of 532 Class III female patients, from

7 to 17 years of age. In all ages considered, the most-connected

nodes are those related to vertical skeletal features (N-Me, SN-

GoGn, PP-PM). These vertical parameters always are connected

with those of mandibular sagittal nodes (SNB, GoPg). These strong

patterns of interaction are observed for all ages considered. Due to

the persistence of such network topology in all age groups, these

highly connected nodes can be regarded as the key features in the

growth of female Class III subjects.

Further results come from the Power Graph analysis of the

networks. With the aim of defining the possible clinical relevance

of these orthodontic network patterns, the patients were differen-

tiated into two cephalometric categories using Wits appraisal of

jaw disharmony, a simple method whereby the severity of degree

of anteroposterior jaw displasia may be measured on a lateral

cephalometric head film. The two class consist of ‘‘mild’’ and

‘‘severe’’ Class III patients (Wits appraisal greater than 23 mm

and Wits appraisal smaller or equal to 23 mm, respectively) [19].

The visual network inspection of these ‘‘mild’’ and ‘‘severe’’ Class

III patients (group G4) reveals several interesting characteristics:

1. the networks of the ‘‘mild’’ patients exhibits a balanced node

pattern (Fig. 7a);

2. in the ‘‘severe’’ patients group, we find a preponderance of

maxillomandibular divergence nodes (related to the vertical

development of the craniofacial system) and mandibular

sagittal nodes (related to the horizontal prominence of the

chin), with poor balance of adaptive nodes (Fig. 7b).

Discussion

Instead of searching single or multiple dentoskeletal radio-

graphic predictors variables, our work attempts to delineate the

overall dentofacial organizing principles, the functional dynamics,

and the regulatory growth principles of Class III malocclusion.

The cephalometric data of a large retrospective cohort of 532

Class III female subjects, in mixed and permanent dentition, were

analyzed through a combination of multivariate computational

techniques: networks analysis of correlation matrices and search

for regulatory motifs. These high-throughput techniques allow the

extraction and identification of new biological insight from data

regarding several related topics of importance during the Class III

craniofacial growth such as robustness, adaptation, time progres-

sion, and structural stability.

Understanding structure-dynamics relationships in networks is a

major goal of complex system research. In several biomedical

fields, the analysis of interaction dynamics of the components may

be useful to capture the essential behavior of the system, to

understand higher-order biological function, and also to facilitate

prediction responses [9,25].

Figure 5. Graph obtained from cephalometric data of 105 female Class III patients between 13 and 14 years of age (group G3). The main bridge
node is S-N-B (longitudinal position of the maxillary arch) divides the structural nodes from the ones representing dentoalveolar adaptive and mixed features.
doi:10.1371/journal.pone.0044521.g005
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General principles behind the relationships between orthodontic

structure and dynamics still are lacking, in part due to the scarcity

of sufficiently general formalism to study structure and dynamics

within a common framework. When a complex system is

investigated using network analysis, the network map often shows

groups of nodes only weakly connected, alternating with groups of

highly connected nodes. Many aspects of the inherent complexity

of nature follow a pattern that is the same in many contexts (from

biology to ecology, sociology, financial markets, etc.). Among the

network of connections, very few nodes have many links (‘‘hubs’’),

while the majority of the remainder are characterized by few or

very few links. These hubs govern the entire system through

preferential interactions, facilitating the movement of information,

creating shortcuts between distant nodes, helping to create a

robust network (‘‘small world networks’’) that can adapt to

environmental stresses [4,24].

A previous investigation illustrated the more compact network

Class III malocclusion structure as regard to Class I and II when

considering phenotypic, functional, and radiographic characteris-

tics [12]. The results of the current study showed that, in the

interrelationship of Class III skeletal elements, the ‘‘driver nodes’’

that presumably guide the growth of the orofacial system are

located in the interplay between maxillomandibular divergence

(PP-PM, NS-Go-Gn) and mandibular sagittal nodes (Go-Gn, Co-

Gn). This structural organization, reflected in the network

topology, probably constrains the range of dynamical behaviors

available to the system during the generative process of the

malocclusion. Our data confirm the observation of Bui et al. [21]

regarding the generative process of Class III malocclusion

observed in a retrospective cohort of 309 patients: the most

important cephalometric variables reflect the anteroposterior and

vertical imbalance during growth, rather than specific Class III

craniofacial structures.

Malocclusions are isoforms of biological complexity. The

network of functional and morphologic characteristics of the

orofacial system causes diffuse connections of strict interdepen-

dence. Any therapeutic intervention applied to a part of the

system, invariably has an impact on other structures. For example,

the decision to open the bite by rotating the mandible clockwise

must take into account the concomitant effects on the vertical

dimension, on the convexity of face, and on the potential

divergence of the occlusal plane [13,17].

Figure 6. Graph obtained from cephalometric data of 99 female Class III patients between 15 and 17 years of age (group G4). The
graph is divided into two groups clearly inter-connected via the bridge N-Me (anterior facial height).
doi:10.1371/journal.pone.0044521.g006

Using Networks to Understand Medical Data

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e44521



Once the pattern of a malocclusion has been identified, it

becomes easier to analyze the force flow in the orofacial network,

to define the local functional entities involved (in Graph theory,

motifs) and localize signaling gates that provide among between

modules, rather than taking solely into consideration the

morphological characteristics of the system [8].

Figure 7. Cliques (motifs) individuated by the Power Graphs analysis for female patients (15–17 years) with mild Class III
malocclusion (panel A) and with severe Class III malocclusion (panel B). Mild Class III patients show a single clique of only three structural
nodes (SNA, N-S-Ar, PP-SN). Severe Class III patients show the presence of three separate cliques: mandibular sagittal nodes (S-N,…),
maxillomandibular divergence nodes (N-Me,…) and adaptive nodes (Wits,..). The comparison between the two figures indicates that severe Class III
patients are characterized by the presence of groups of strongly inter-correlated features, i.e. tend to act as a single whole system.
doi:10.1371/journal.pone.0044521.g007

Table 1. The 21 cephalometric variables employed in our study.

SN anteroposterior length of the cranial base

Wits Wits appraisal

Co-A midfacial length as distance from Co to A

Co-Gn mandibular length as distance from Co to Gn

Ar-Go mandibular ramus height

NS-GoGn divergence of the mandibular plane relative to the anterior cranial base

NS-Ar saddle angle

ArGoMe gonial angle

SNA anteroposterior maxillary position to the anterior cranial base

SNB anterorposterior mandibular position to the anterior cranial base

IMPA angle between the lower incisor with the mandibular plane

ANB anteroposterior relation of the maxilla and the mandible

Interincisal angle between the axis of the upper and the lower incisor

PP-SN inclination of the palatal plane in relation to anterior cranial base

PP-PM inclination of the palatal plane in relation to the mandible plane

NMe anterior facial height

FMIA angle between the axis of the lower incisor and the Frankfort plane

Overbite Vertical distance between the incisal edges of the most protrusive maxillary and mandibular central incisors.

Overjet Horizontal distance between the incisal edge of the most protrusive maxillary central incisors and the most facial aspect of the crown
of the most protrusive mandibular central incisor

Go-Pg distance between gonion and pogonion points

Co-Go distance between condylion and gonion points

Most of the cephalometric variables are angles or distances derived from the cephalometric reference landmarks (Fig. 2).
doi:10.1371/journal.pone.0044521.t001
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The present study shows that during the growth process of Class

III malocclusion the skeletal vertical and sagittal growth features

(SN-GoGn, PP-PM) are central in the interacting network of the

system components: these nodes can be considered the ‘‘driver

nodes’’ for the growth of the orofacial system. The ability of the

orofacial system to function as an integrate unit may arise from the

balance of activities between the modules: this may be the core

design principle revealed by orthodontic network analysis.

Network analysis revealed that the patients with more unbalanced

cephalometric features (‘‘severe patients’’) present a network

topology with a preponderance of the skeletal nodes and minor

relevance of adaptive dentoalveolar nodes. In the ‘‘mild’’ patient

group, the network topology showed a greater balance between

skeletal and adaptive craniofacial features. In the patients with

more pronounced radiographic Class III features, we have

identified two subnetworks of strong functional interaction

(cliques). As observed in several metabolic pathways, these

subnetworks are recognized as critical elements of biological

organization [7,8]; they work as feed-forward loops, with high

capacity of anticipatory regulation as opposed to the homeostatis

effects of feed-back loops. Such analysis confirms the importance

of considering the co-occurrence of the interrelated morphologic

features, reinforcing the hypothesis that these sites of co-

occurrence of the overall interrelated morphologic features are

more suitable to indicate the favorable or unfavorable progression

of this type of disharmony respect to the individual orthodontic

features. Presumably, the convergence of the orthodontic thera-

peutic approaches into these modules allows the clinician to

maximize results and to shorten treatment times.

Computational technology has proved to be most useful in the

handling of mass data (in the present case, a set of cephalometric

measurements). As orthodontic studies shift from local description

to system analysis, we need to identify the design principles of large

craniofacial features networks. The limitations of viewing the head

region in two dimensions only are well known. However, postnatal

growth differences and the high incidence and magnitude of

anteroposterior and vertical dentofacial abnormalities render this

record useful for characterizing the overall morphology of the

growing orofacial system.

The result of the present study indicate that, in their most basic

abstraction level, the orofacial radiographic characteristics can be

represented as networks using nodes to represent orthodontic

characteristics, and edges to represent their various types of

interactions. A substantial portion of the Class III issues during

growth is driven by only a few nodes. By linking radiographic data

and phenotypes to clinical characteristics in a causal or correlative

manner, these observations may contribute to the construction of a

model that provides a theoretical framework of the reciprocal

interaction between organizing craniofacial pathways, growth, and

malocclusion.

In conclusion, due to their generality, the application of network

mathematical models could increase the interpretation of quan-

titative, patient-specific information and help to better targeting of

therapy not only in orthodontics but also in other medical fields.
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