
The mathematical structure of innovation
Thomas M. A. Fink∗ and Ali Teimouri†

London Institute for Mathematical Sciences, 35a South St, Mayfair, London W1K 2XF, UK

Despite our familiarity with specific technologies, the origin of new
technologies remains mysterious. Are new technologies made from
scratch, or are they built up recursively from new combinations of
existing technologies? To answer this, we introduce a simple model
of recursive innovation in which technologies are made up of com-
ponents and combinations of components can be turned into new
components—a process we call technological recursion. We derive a
formula for the extent to which technological recursion increases or
decreases the likelihood of making new technologies. We test our pre-
dictions on historical data from three domains and find that technolo-
gies are not built up from scratch, but are the result of new combina-
tions of existing technologies. This suggests a dynamical process by
which known technologies were made and a strategy for accelerating
the discovery of new ones.

Where do new technologies come from? Despite our familiarity
with specific technologies, such as wind turbines, touch screens
and GPS, how new technologies come into being remains
mysterious [1]. By definition, new technologies lie just beyond
our imagination [2], and navigating an expanding space of
possibilities is challenging [3, 4].

However, we have a better understanding of what technolo-
gies are. Technologies are made up of component building
blocks [5–9, 23]: “a combination of components to some
purpose” [10]. For example, GPS is made up of the components
of atomic clocks, satellites and receivers, and wind turbines are
made up of rotors, generators and towers.

When a technology—a combination of components—becomes
a reliable functioning unit, it becomes more readily available,
and obtaining the whole is easier than gathering the individual
parts. It is given a name and used as a component in its own
right. So technologies are combinations of components, and
these technologies can themselves be adopted as components.
In this way technologies are made up of more primitive
technologies, in a hierarchical way, as shown in Fig. 1 for
GPS. New technologies are not built up from scratch, but
are the result of new combinations of existing technologies—a
hypothesis described qualitatively by Brian Arthur in The
Nature of Technology [11].

In the mind of the innovator, too, the combination is
no longer a complex assembly, but a distinct unit, ready
for use [14]. This alters the innovator’s perception of the
adjacent possible: it biases it in favour of designs which use the
combination, since now they are one step away, rather than the
multiple steps needed for the constituent parts.

Technological recursion
Turning a combination of components into a new component
is a recursive process, and we call it technological recursion.
How does it effect a technology sector? On the one hand,
technological recursion makes a sector simpler. Technologies
which were previously composed of many components become
composed of fewer components. This makes them easier to
make because, given access to a fixed number of components,
we are more likely to have the components needed to make
technologies with few components than those with many [7].

On the other hand, technological recursion makes a technol-
ogy sector more complicated. There is another component to
keep track of, and the number of combinations of components
grows exponentially with the number of components. In this
expanded search space, there are more candidate combinations
to sift through when searching for new technologies.

Too much technological recursion and too little both inhibit

discovering new technologies. With too much, there is a surge
of new components, most of which are nearly useless. This is
similar to how, in language, if every sentence fragment becomes
a new word, the numbers of words escalates. With too little
recursion, technologies become ever more complex, with no
apparent structure across different organizational length scales.
For example, without technological recursion, GPS is made
from at least 13 components rather than three (see Fig. 1). This
is similar to how, in language, if no new words are introduced,
the number of words needed to describe innovations multiplies;
without the new word “GPS”, for instance, we would be stuck
with “global positioning system”.

In this Letter
The interplay between existing technologies and the compo-
nents for making new ones is at the heart of understanding
where new technologies come from. In this Letter we do
four things. First, we introduce a simple model of recursive
innovation in which technologies are made up of components,
and combinations of components can be turned into new
components—a process we call technological recursion. Second,
we derive a formula for the expected benefit of technological
recursion: the extent to which it increases or decreases the
likelihood of making new technologies. Third, we apply our in-
sights to historical data from language, gastronomy and drugs,
and find that only a small fraction of technological recursions
increase the chance of making new technologies. Remarkably,
these are almost always complete technologies, confirming the
hypothesis that technologies are built up recursively. Fourth,
we show that repeated technological recursion can increase the
likelihood of making new technologies by orders of magnitude.
This suggests a dynamical process by which known technologies
were made, and a strategy for accelerating the discovery of new
ones [26].

GPS

Receiver

Antenna

Filter

Amplifier

Satellite

Rocket

Solar cell

Thrusters

Guidance
system

Injector
Solid
fuel

Charge
controller

Inverter

Semi-
conductor

Atomic clocks

Vacuum
chamber

Microwave cavity

Laser
Gain
medium

Optical
cavity

Pump
source

Dielectric Metal cavity
Vacuum
pump

Metal
cavity

Figure 1: The recursion structure of technology. Technologies are made
up of more primitive technologies in a hierarchical way. For example, GPS
is made up of the components of atomic clocks, satellites and receivers.
Atomic clocks, in turn, are made up of lasers, microwave cavities and
vacuum chambers; and so on. We call this process of turning a com-
bination of components into a new component technological recursion.
Although we do not show it here, GPS is itself a component in subsequent
technologies, such as guided missiles and earthquake monitors.

2

Results
Lego game
To illustrate our insights, consider three children, Eve, Frank
and Grace, playing with three different Lego sets. The goal
of each child is to make as many toys as possible. Eve has
an ordinary set of Lego bricks. Frank has the same set, but
he modified it by permanently gluing together pieces that
frequently go together, such as wheels and axles, so that he
has quick access to these modules when needed. Grace adopted
Frank’s strategy, but took it further. Not only did she glue
together pieces frequently used in the same toy, but she also
glued pieces that are used in the same toy just occasionally,
such as baseplates and doors. Each child scoops out a random
bunch of pieces from their box of Lego bricks. All three have the
same number, but whereas Eve has only individual bricks, some
of Frank’s pieces are whole modules that he pre-assembled.
Grace has more modules and fewer individual bricks.

Which child makes the most toys? While Eve assembles
individual bricks, Frank has the advantage that when the
toy he is making contains one of his pre-assembled modules,
he’s sure to have all the pieces contained in it. But while
Frank comes in first place, Grace comes in last. Despite
having more modules than Frank, her approach backfires.
Many of her modules belong to toys that she can’t complete.
Because she has fewer individual bricks than the others,
she’s often missing the right bricks to finish off toys she can
partially make. As we shall see, turning the right combina-
tions of components into new components can dramatically
increase the number of makeable technologies, but turning
too many combinations into components has the opposite effect.

Components and technologies
We take technologies to be made up of distinct components
[5–11]. A component can be a material object, like a capacitor,
or a routine, like polymerase chain reaction, or a skill, like
coding in Java. Once a component has been discovered, we do
not have to worry about running out; there are no capacity
constraints. Any subset of our components can be combined,
but a combination either is, or is not, a technology, according
to some universal recipe book of technologies. Suppose further
that there are a total of N possible components in “God’s own
cupboard” but that, at any given stage n, we only have in our
basket n of these N possible components. At every stage, we
pick a new component to add to our basket, increasing n by 1.

The size c of a technology is the number of distinct com-
ponents a technology is made of. The order of components
is irrelevant, and multiple occurrences of a component count
once, so the word “innovation” has c = 6 components, not 10.

Size of the technology space
Consider a specific basket of n components, which we call n.
Notice how we differentiate between a particular set of com-
ponents n and their number n. Let the size of the technology
space p(n) be the number of technologies that we can make
from n. Of course, p(n) depends on the specific components in
our basket, and not just on how many we have; for example,
we can make more words from the first five letters of the
alphabet than the last five. To bypass this, we take the average
over all possible baskets of size n drawn from the N possible
components. We call this the expected size of the technology
space, p(n). We denote the number of makeable technologies of
size c by p(n, c), so that summing p(n, c) over c gives p(n).

In previous work [7, 22], we proved that p(n, c)—the average
of p(n, c) over all possible baskets n—satisfies an exact

conservation law: for two different stages n and n′,

p(n, c)
/(
n
c

)
= p(n′, c)

/(
n′

c

)
, (1)

where
(
n
c

)
is the binomial coefficient. We will use this later

when we determine the effect of technological recursion.

Combination usefulness
Some combinations of components show up in more technolo-
gies than others. Consider some combination of k components
which appear together in one or more technologies; we call the
k components a module and label it θ for convenience. The
combination usefulness uθ(n) is the number of technologies
makeable from the components n that the combination θ shows
up in. As with the size of the technology space p, uθ(n, c)
denotes the number of technologies of size c that θ shows up
in.

We proved (see Methods) that uθ(n, c)—the average
of uθ(n, c) over all possible baskets n—satisfies an exact

a
ad

d

a
a

a
add

a
baa

a
bad
b b a

cad
a
cab

a
dab
b

b

a
baa

b

a
dad db

bb

a

d

c

b

d

d

c

a
a ad

θ

add
θ

dad
θ

θθθ

a

a θ=

d

bad
b

d d d d

db
b d

dd

b

cad

a
cab

c

dab
b

c c

c

A

B

ab,bd,abc,acd

ac,bc,cd,bcd,abcd

ad
abd

A

B

C

1 2 3 4 5

0.3

1

3

10

Number of letters

N
um
be
r
of
m
ak
ea
bl
e
w
or
ds

Figure 2: Turning a technology into a component can increase the
number of makeable technologies. A In a simple example from language,
the components are the letters a, b, c and d and the technologies are the
10 English words that can be made from them. The order and repetition
of letters in the words are irrelevant. One word has 1 different kind of
component, five have 2 kinds and four have 3 kinds. B When we expand
our repertoire of components by turning one of the words, ad, into a
component—call it θ—some words are made up of fewer components
than before. Now four words have 1 different kind of component, five
have 2 kinds and one has 3 kinds. C How many words can we make,
on average, when we pick n random components? When we draw from
the original repertoire of four components in A, the result is given by the
black curve. When we draw from the new repertoire of five components in
B, it is given by the purple curve. Turning ad into a component increases
the expected number of makeable words 3.2-fold when we draw one
component and 1.6-fold when we draw two, but when we draw three or
more components it decreases. The solid tan curves show the result for
turning other words into components, all of which offer some advantage
when the size of the draw is small. The dashed gray curves show the
result for all other combinations, none of which offer any advantage.

3

Language

Modules
Expanding modules
Expanding modules that are technologies
Modules approximation

2 4 6 8 10 12 14
1

10

100

1000

104

105

Module size

W
or

d
m

od
ul

es Gastronomy

5 10 15 20 25 30

1

1000

106

109

Module size

R
ec

ip
e

m
od

ul
es

Drugs

2 3 4 5 6

5

10

50

100

500

1000

Module size

D
ru

g
th

er
ap

y
m

od
ul

es

A B C

Figure 3: Expanding modules are rare but almost always complete technologies. ABC In our three domains, the top curves are the number of
distinct combinations of c components: pairs, triples, quadruples, and so on. The purple solid curve is the number expanding modules: combinations
that increase the likelihood of making new technologies. The red dashed curves are the number of expanding modules that are complete technologies,
rather than parts of technologies. Remarkably, almost all expanding modules are complete technologies.

conservation law: for two different stages n and n′,

uθ(n′, c)
(
n′

k

)/(
n′

c

)
= uθ(n, c)

(
n
k

)/(
n
c

)
. (2)

With these two conservation laws in hand, we are ready to
determine the effect of technological recursion.

Effect of technological recursion
The likelihood that a random combination of c components is
a technology is p(n, c)/

(
n
c

)
. Therefore increasing the likelihood

of making a technology corresponds to increasing the expected
number of technologies p(n, c) that we can make, which we now
address.

In a technological recursion, we replace a combination of
k components θ with a new individual component θ in all of
the technologies in which the combination θ shows up. We
indicate this as θ → θ. Notice that we differentiate between
the combination of components θ and the new individual
component θ that replaces them. An example is shown in Fig.
2ab.

When we apply the technological recursion θ → θ, some
technologies of size c + k − 1 are reduced to size c, and some
technologies of size c are reduced to size c − k + 1. So we
both add and subtract to the original number of makeable
technologies of size c. The effect of a technological recursion
depends on whether this net change, summed over c, is positive
or negative. We obtained a formula, derived in the Methods,
that gives the expected number of technologies we can make
after applying θ → θ:

pθ(n) '
(

1− x
N+1

d
dx

)(
p(n) + (x− xk)uθ(n)

)
, (3)

where x = n/N . Because p(n) and uθ(n) are unbiased estimates
of their means, we can estimate p(n) and uθ(n) by p(n) and
uθ(n). We do not assume knowledge of the technology recipe
book for components that we do not possess; there is no
omniscience.

Expanding modules
When pθ(n) > p(n), we can make more technologies from
n components drawn from the updated repertoire of N + 1
components than we can from n components drawn from the
original repertoire of N components. We call a combination
θ that increases the number of makeable technologies an
expanding module. From (3), pθ(n) > p(n) implies

vθ(n) > x
N+1

(
p′(n) + v′θ(n)

)
, (4)

where x = n/N , vθ(n) = (x − xk)uθ(n) and ′ indicates the
derivative with respect to x.

Language, gastronomy and drugs
With a test for expanding modules in hand, we now apply our
theory to real systems. We gathered data from three domains:
language, gastronomy and drugs. In language, the technologies
are the 38,970 English words and the components are the 26
letters used to make them. In gastronomy, the technologies
are 56,498 recipes and the components are the 381 ingredients
used to make them [24]. In drugs, the technologies are the 1363
known drug combination therapies and the components are the
901 individual drugs used to make them [25].

We did the following experiment for each domain. We
randomly selected n components to put into our basket and
counted how many technologies we could make from them.
Using the conservation law in eq. (1), we were able to average
this over all possible baskets of size n. This gives p(n).

We then picked a combination of k components θ, and
replaced it with the new individual component θ everywhere
it showed up in a technology. This raises the total number of
possible components from N to N + 1. We randomly selected
n components drawn from this new repertoire to put into our
basket and counted how many technologies we could make. As
before, we averaged this over all possible baskets using eq. (3).
This gives pθ(n).

Expanding combinations are rare
We repeated the above experiment for all possible combinations
of k components θ that show up in at least one technology:
pairs, triples, quadruples and so on. (We did this for all k in
language and drugs but for k ≤ 5 for gastronomy for computa-
tional reasons.) We found that only a small fraction of these
combinations increase the number of makeable technologies.
For k ≤ 5 across all domains, we found that in language, there
are 128,413 letter combinations, of which 4,426 are expanding;
in gastronomy, there are 65,157,341 ingredient combinations, of
which 9,839 are expanding; and in drugs, there are 3,130 drug
combinations, of which 1,381 are expanding. These are plotted
in Fig. 3 as a function of the module size k.

Expanding modules are complete technologies
Our hypothesis is that technologies are not built up from
scratch, but are the result of new combinations of existing
technologies [10, 11]. In other words, the components of
technologies are themselves complete technologies, and not just
parts thereof.

To test this this hypothesis, we checked to see how many of
these expanding modules are complete technologies, and not
just parts of technologies. Remarkably, almost all expanding
modules are complete technologies: 98.70%, 96.88% and 98.62%
in language, gastronomy and drugs.

4

A B C

Figure 4: Recursively turning technologies into components. ABC For each domain, we applied a technological recursion using the best pair
module (a module of size k = 2). We repeated this process, recursively, 20 times. When a pair of components is subsequently used as a component
in another pair, it appears as a triple of components, and so on. The hierarchical structure of the 20 technological recursions is shown below each
sector.

Recursively turning technologies into components
So far we have applied just a single technological recursion to
our domains. But we can repeatedly turn technologies into
components in a recursive way. In this case the effects combine
to amplify each other.

For each of our three domains, we found the most expanding
pair module (a module of size k = 2) and applied it as a
technological recursion. We then repeated the process, recur-
sively, always only considering pair modules. The result of 20
iterations of this recursive process are shown in Fig. 4, top. We
find that sometimes, the best pair module involves previously
formed pairs, shown in Fig. 4, bottom. The end result is that
the number of makeable technologies increases by a factor of
two to 28.

Discussion
Modularity and technological recursion
In any collection of systems of parts, certain motifs may recur:
groups of parts which regularly appear together or relate to
each other in the same way. A system exhibits modularity when
the recognition of these motifs makes it possible to describe it
more concisely or manipulate it more easily [13, 19, 20]. One of
the challenges in identifying modules is that there is, in general,
no objective criterion for when a motif is sufficiently regular to

be recognized and treated as a unit in its own right. Just as
data analysis is fraught with the possibility of under-fitting and
over-fitting, a system of many parts can be under-modularized
and over-modularized. At the extremes, every repeating motif
is a module and no motif is sufficiently common to be a module.

We provide an objective criterion for identifying modules in
technology, namely, that a combination of components forms a
module if doing so increases the likelihood of discovering new
technologies. We find that such combinations of components
are rare, and that they have a recursive structure: they possess
a hierarchy of organizational length scales which increases
as new technologies are discovered [12]. But that’s not all.
We also find that the modules present in technologies are
nearly always themselves complete technologies, rather than
parts of technologies or a collection of disparate components
from multiple technologies. This provides quantitative support
for the hypothesis that technologies are the result of new
combinations of existing technologies [10, 11].

Transforming the adjacent possible
Technological innovation can be conceived of as exploring
an expanding space of possibilities. Each new building block
combines with our existing set of building blocks in new ways.
From this perspective, technological recursion—turning a
combination of components into a new component—transforms

5

the space by bringing regions that were once far apart closer
together. When a technology of multiple components becomes
a single component, it is easier to use that technology to make
a new technology because using it is now one step away, rather
than the multiples steps required to reach all of its constituent
components. In this way technological recursion alters the map
of the adjacent possible [3, 4]. The innovator, especially one
with limited resources, is biased towards technologies nearby in
possibility space because there are fewer parts that he might
be lacking [17]. Our insights provide a prescription for which
technological recursions maximise the likelihood of discovering
new technologies [18].

New technologies shape their own environment
In a recursive process, the output of the process becomes the
input to the same process. Recursive processes are hard to
understand because they can shape their own environment;
we can no longer assume that the environment is constant, or
at least slowly changing, as is commonly assumed in models
of evolution, for example. In technological recursion, the
process is combining components, and the output—a potential
technology—can become part of the input—the repertoire of
components for making new technologies.

An important consequence of technological recursion is that
technologies shape their own environment: the likelihood of
new technologies coming into being can be substantially altered
by the the technology itself. While the technologies of next
year will be made up in part of the technologies of today,
the technologies two years hence will be made up of those of
next year. Forecasting technology thus involves a hierarchy
of prediction problems in an expanding space of building
blocks, which helps explain the poor track record of long-term
technological prediction [2, 15].

Drug discovery
Drug combination therapies, one of the three domains that we
analyzed, use multiple drugs simultaneously to treat a disease.
But designing new combination therapies is difficult because
there are a thousand individual drugs which can be used as
components [25]. So there are on the order of a million possible
two-drug therapies, a billion three-drug therapies, and so on.
While there are some rules of thumb for which drugs tend to
co-appear in successful therapies, thereby reducing the space of
possibilities, drug combination therapy lacks systematic design
principles [25]. Similar challenges are found in combinatorial
chemistry, which has played a key role in the discovery of
many drugs. But such brute force approaches, with their low
odds of success, are expensive, and the way in which many
pharmaceutical companies approach drug discovery is thought
to be unsustainable [29].

Using our insights, pharmaceutical companies can increase
the chance of hitting upon new drugs and drug combination
therapies by strategically redefining the repertoire of com-
ponent building blocks to include existing drugs and drug
therapies [27, 28]. This is analogous to how, in language,
phonemes can be a more successful repertoire of components
for building words than letters. Our analysis could be enhanced
by access to the proprietary positive and negative results held
by drug firms. This would lead to higher discovery hit rates
and fewer wasted trials.

Methods
Data
Our three data sets were obtained as follows. In language, our
list of common English words is from the built-in WordList
library in Mathematica 11.3. Of the 39,176 words in WordList,
we only considered the 38,970 made from the 26 letters a–z,

ignoring case: we excluded words containing a hyphen, space,
and so on. In gastronomy, the 56,498 recipes can be found
in the supplementary material in [24]. In drugs, the 1,363
therapies can be found in [25].

Module invariant
Let N be the set of N possible components and θ be a subset
of k components, or module, chosen from N . Let Nk be the set
of N − k other components not including θ, let nk be a subset
of n − k components chosen from Nk, and let ck be a subset
of c − k components chosen from nk. The module usefulness
uθ(n, c) is the number of technologies of size c makeable from
the components n that the k components θ show up in. We
can also think of the module usefulness in a different way. It is
how many more technologies of size c we can make from the
components nk together with θ, than from the components nk
alone:

uθ(n, c) =
∑
ck⊆nk

P(θ ∪ ck)− P(ck),

where P(θ ∪ ck) takes the value 0 if the combination of compo-
nents θ ∪ ck form no technologies of size c and 1 if θ ∪ ck form
one technology of size c.

The mean usefulness of the k components θ, uθ(n, c), is the
average of uθ(n, c) over all subsets nk ⊆ Nk; there are

(
N−k
n−k

)
such subsets. Therefore

uθ(n, c) = 1
/(
N−k
n−k

) ∑
nk⊆Nk

uθ(n, c)

= 1
/(
N−k
n−k

) ∑
nk⊆Nk

∑
ck⊆nk

P(θ ∪ ck)− P(ck).

Consider some particular combination of components c′k. The
double sum above will count c′k once if c = n, but multiple times
if c < n, because c′k will belong to multiple sets nk. How many?
In any set nk that contains ck, there are n− c free elements to
choose, from N−c other components. Therefore the double sum
will count every combination ck a total of

(
N−c
n−c

)
times, and

uθ(n, c) =
(
N−c
n−c

)/(
N−k
n−k

) ∑
ck⊆Nk

P(θ ∪ ck)− P(ck)

=
(
n
c

)/(
N
c

) (
N
k

)/(
n
k

)
uθ(N , c), (5)

noting that uθ(N, c) = uθ(N , c). Solving both equations for
uθ(N, c) and equating them, we obtain the exact conservation
law for the module usefulness for any two stages n′ and n:

uθ(n′, c)
(
n′

k

)/(
n′

c

)
= uθ(n, c)

(
n
k

)/(
n
c

)
.

Technological recursion equation
Setting n′ = N in eq. (1), p(n, c) can be expressed in terms of
the number of makeable technologies when we have access to all
N of the possible components,

p(n, c) = p(N , c)
(
n
c

)/(
N
c

)
, (6)

noting that p(N, c) = p(N , c).
Now let us apply the technological recursion θ → θ, that

is, let us replace the combination of k components θ with the
single new component θ every time the k components show up
in the same technology. Let pθ(n, c) be the expected number
of technologies of size c that can be made from n components
drawn from N ∪ θ, the union of the N components N and the
new component θ, giving N + 1 components in total. Just as in
eq. (6), we can write

pθ(n, c) = p(N ∪ θ, c)
(
n
c

)/(
N+1
c

)
. (7)

6

When we replace θ with θ, some technologies of size c+k−1
are reduced to size c, and some technologies of size c are reduced
to size c−k+1. It is the net change that counts, so the relation
between p(N ∪ θ, c) and p(N , c) is

p(N ∪ θ, c) = p(N, c)− uθ(N, c) + uθ(N, c+ k − 1).

Substituting this into eq. (7) gives

pθ(n, c) =
(
p(N, c)− uθ(N, c) + uθ(N, c+ k − 1)

)
×
(

1− c
N+1

) (
n
c

)
/
(
N
c

)
.

Substituting eqs. (6) and (5) into this, and approximating
(
n
c

)
and

(
N
c

)
by nc and Nc for n,N � c, we find

pθ(n, c) '
(

1− c
N+1

)(
p(n, c)−xk uθ(n, c)+xuθ(n, c+ k − 1)

)
=
(

1− x
N+1

d
dx

)(
p(n, c)−xk uθ(n, c)+xuθ(n, c+k−1)

)
,

where x = n/N . Summing over c,

pθ(n) '
(

1− x
N+1

d
dx

)(
p(n) + (x− xk)uθ(n)

)
. (8)

Toy model
Despite its simplicity, the toy model in Fig. 1 captures many
of our insights, and it is worth working through it explicitly.
From eq. (6), the expected number of makeable words when we
randomly draw 1 ≤ n ≤ 4 letters from a, b, c and d is

p(n) = 1
(
n
1

)
/
(
4
1

)
+ 5
(
n
2

)
/
(
4
2

)
+ 4
(
n
3

)
/
(
4
3

)
= (2n3 − n2 + 2n)/12,

where the coefficients 1, 5 and 4 are the numbers of words of
size 1, 2 and 3.

Now let us replace the letters a and d—which together we
call θ—with a new single component θ whenever a and d show
up in the same word. The expected number of makeable words
when we randomly draw n ∈ [1, 5] letters from a, b, c and d and
θ is

pθ(n) = 4
(
n
1

)
/
(
5
1

)
+ 5
(
n
2

)
/
(
5
2

)
+ 1
(
n
3

)
/
(
5
3

)
= (n3 + 12n2 + 35n)/60,

where the coefficients 4, 5 and 1 are the numbers of words of size
1, 2 and 3 after the technological recursion θ → θ. For the sake
of visualization, in Fig. 1 we interpolate between integer values
of n by replacing the factorials in the binomial coefficients with
the gamma function, even though such non-integer values are
unphysical.

We can calculate pθ(n) without explicitly making the substi-
tutions by using eq. (8). We find

pθ(n) = 4
5
(1 + 3− 0)

(
n
1

)
/
(
4
1

)
+ 3

5
(5 + 3− 3)

(
n
2

)
/
(
4
2

)
+

2
5
(4 + 0− 3)

(
n
3

)
/
(
4
3

)
= (n3 + 12n2 + 35n)/60,

which matches the result of explicit substitution above.

Approximating the number of modules
We calculate the number of modules by counting the subsets
of size k of each technology (pairs, triples, and so on) and

getting rid of duplicates. For data sets that have technologies
with many components, such as gastronomy where the largest
recipes has 31 ingredients, this is computationally demanding.
In this case we approximate the number of modules by
assuming that the likelihood a subset of one technology belongs
to another technology is negligible, the number of modules is
then given by ∑

c≥k

p(N, c)
(
c
k

)
. (9)

This is the dashed orange line in Fig. 3, which matches the true
number well for c ≥ 6.

Acknowledgements
The authors thank Martin Reeves and Andriy Fedosyeyev for helpful discussions
and Roman Rybiansky for assisting with the figures. A. Teimouri’s postdoc position
is funded by the BCG Henderson Institute.

∗tf@lims.ac.uk, †it@lims.ac.uk

[1] D. H. Erwin, D. C. Krakauer, Insights into innovation, Science 304, 1117
(2004).

[2] T. Felin, S. Kauffman, R. Koppl, G. Longo, Economic opportunity and evo-
lution: Beyond landscapes and bounded rationality,Strateg Entrep J 8, 269
(2014).

[3] F. Tria et al., The dynamics of correlated novelties, Sci Rep 4, 5890 (2014).
[4] V. Loreto, V. Servedio, S. Strogatz, F. Tria, Dynamics on expanding spaces:

Modeling the emergence of novelties, Creativity and Universality in Language,
(2016).

[5] H. Youn, D. Strumsky, L. Bettencourt, J. Lobo, Invention as a combinatorial
process: evidence from US patents, J Roy Soc Interface44, 0272 (2015).

[6] T. Fink, M. Reeves, R. Palma, R. Farr, Serendipity and strategy in rapid
innovation, Nat Commun 8, 2002 (2017).

[7] T. M. A. Fink, M. Reeves, How much can we influence the rate of innovation?,
Science Advances 5, eaat6107 (2019).

[8] T. E. Stuart, J. M. Podolny, Local search and the evolution of technological
capabilities, Strateg Manage J 17,21 (1996).

[9] L. Fleming, Recombinant uncertainty in technological search, Management
Sci 47, 117 (2001).

[10] W. B. Arthur, The structure of invention, Res Policy 36, 274 (2007).
[11] W. B. Arthur, The Nature of Technology: What It Is and How It Evolves

(Penguin, London, 2010).
[12] R. N. Langlois, Modulay in technology and organization J Econ Behav Organ

49 1937 (2002).
[13] K. B. Clark, C. Baldwin Design Rules: The Power of Modularity (MIT Press,

Cambridge, 2000).
[14] J. McNerney et al., Role of design complexity in technology improvement,

Proc Natl Acad Sci 108, 9008 (2011).
[15] J. D. Farmer, F. Lafond, How predictable is technological progress?, Res

Policy 45, 647 (2016).
[16] V. Sood et al., Interacting branching process as a simple model of innovation,

Phys Rev Lett, 105, 178701 (2010).
[17] I. Iacopini, S. Milojević, V. Latora, Network dynamics of innovation processes,

Phys Rev Lett 120, 048301 (2018).
[18] D. Rotolo, D. Hicks, B. R. Martin, What is an emerging technology?, Res

Policy 44, 1827 (2015).
[19] C. Hidalgo, R. Hausmann, The buildings blocks of economic complexity, Proc

Natl Acad Sci 106, 10570 (2009).
[20] M. Christelli et al., A metrics for the economic complexity of countries and

products, PLOS ONE 8, e70726 (2013).
[21] R. Van Noorden, Physicists make ‘weather forecasts’ for economies, Nature

1038, 16963 (2015).
[22] M. Reeves, T. Fink, Harnessing the secret structure of innovation, MIT Sloan

Manag Rev 37, 59 (2017).
[23] C. Hidalgo, Economic complexity: From useless to keystone, Nat Phys 14, 9

(2018).
[24] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L.Barabasi, Flavor network and

the principles of food pairing, Sci Rep 1, 196 (2011).
[25] Y. Liu et al., DCDB 2.0: a major update of the drug combination database,

Database 2014, bau124 (2014).
[26] W. B. Arthur, W. Polak, The evolution of technology within a simple com-

puter model, Complexity 11, (2006).
[27] D. Verhoeven, J. Bakker, R. Veugelers, Measuring technological novelty with

patent-based indicators, Research Policy 45, 707 (2016).
[28] D. Strumsky, J. Lobo, Identifying the sources of technological novelty in the

process of invention, Research Policy 44, 1445 (2015).

[29] J. Hunter, S. Stephens , Is open innovation the way forward for big pharma?,

Nat Rev Drug Discov 9, 87 (2010).

