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Models of discrete space and space-time that exhibit continuum-
like behavior at large lengths could have profound implications for
physics. They may tame the infinities that arise from quantizing grav-
ity, and dispense with the machinery of the real numbers, which has
no direct observational support. Yet despite sophisticated attempts
at formulating discrete space, researchers have failed to construct
even the simplest geometries. We investigate graphs as the most el-
ementary discrete models of two-dimensional space. We show that if
space is discrete, it must be disordered, by proving that all planar lat-
tice graphs exhibit the same taxicab metric as square grids. We give
an explicit recipe for growing disordered discrete space by sampling
a Boltzmann distribution of graphs at low temperature. We then pro-
pose three conditions which any discrete model of Euclidean space
must meet: have a Hausdorff dimension of two, support unique
straight lines and obey Pythagoras’ theorem. Our model satisfies
all three, making it the first discrete model in which continuum-like
behavior is recovered at large lengths.
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The small-scale structure of space has puzzled scientists1

and philosophers throughout history. Zeno of Elea (1)2

claimed that geometry itself is impossible because there is no3

consistent form this small-scale structure can take. He argued4

that a line segment, which can be halved repeatedly, cannot5

ultimately be composed of pieces of non-zero length, else it6

would be infinitely long. However, it also cannot be composed7

of pieces of zero length, for no matter how many are added8

together, the resulting line will never be longer than zero.9

It is a lasting tribute to the optimism of researchers that10

work on geometry nevertheless carried on. Soberingly, it was11

not until the 19th century – nearly two and a half millennia12

later – that Cantor finally resolved the paradox by defining the13

continuum. He showed that the line must be composed not just14

of an infinite number of points, but of an uncountably infinite15

number, so that the second half of Zeno’s argument fails.16

This uncountable infinity is described by the mathematical17

machinery of the real numbers. The continuum is the basis18

for all descriptions of space and space-time, and therefore all19

of theoretical physics.20

In the 20th century, Weyl (2) further claimed that the con-21

tinuum is the only possible model of space. He constructed a22

tiling argument, purporting to show that if space is discrete,23

Pythagoras’ theorem – or, equivalently, the Euclidean met-24

ric – is false. Weyl’s proof, however, contains an unstated25

assumption which turns out to be the key to its resolution.26

Despite this long belief in the necessity of the continuum,27

researchers are actively pursuing discrete (3–5), or at least28

piece-wise flat (6–10), models of space and space-time, as they29

offer the possibility to remove non-renormalizable infinities30

which arise in simple versions of quantum gravity. All these31

Fig. 1. The geometry of the square grid graph. Two nodes A and B on the
square grid graph are separated by 19 edges. There are many possible shortest
paths (geodesics) of length 19 edges between the nodes, of which two are shown in
black. The resemblance to the possible routes followed by yellow cabs in New York
city inspired the term ‘taxicab metric’ for the measure of distance on this graph (14).

models can be thought of as graphs, where just the graph 32

itself matters, not its embedding into another space. The only 33

natural metric in this case is graph geodesic distance: the 34

distance between two nodes is the smallest number of edges 35

joining them. 36

In two dimensions, toy models of ‘quantum graphity’ aim 37

to produce planar graphs made up of triangles but, so far 38

(11, 12), with little success. A final problem encountered with 39

graph models is that completely random triangulations of the 40

plane do not even have dimension two. They are so crumpled 41

that the number of nodes in a disc of radius r scales as r4, not 42

r2 (13). 43

In light of these difficulties, the prospects for building a 44

consistent discrete model of even the Euclidean plane seem 45

poor. In this Article, we show that it is in fact possible 46

to discretize space. We do three things. First, we prove 47
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Fig. 2. Geodesic confinement is not found in planar lattice graphs but is in
planar disordered graphs. (a) In a doubly-periodic triangulation (a modified snub
square tiling), two nodes marked as circles are 22 edges apart. We call the set
of all geodesics between them (shown in black) the geodesic bundle, containing a
number of nodes proportional to the square of the geodesic length. (b) In a random
triangulation, the geodesic bundle between two nodes 22 edges apart is confined to
a narrow region. We call this phenomenon geodesic confinement. (c) A nonplanar
doubly periodic graph (all nodes shown as circles) has neither a taxicab nor Euclidean
metric.

that any discrete model of two-dimensional space must be48

disordered, by showing that all planar lattice graphs have49

a taxicab metric (14). Order is the hidden assumption in50

Weyl’s proof of the impossibility of discrete space. Second,51

we describe a local, statistical process, with an associated52

temperature, which provides an explicit recipe for growing53

disordered graphs. Third, we propose three tests which any54

model of Euclidean space must pass. We find that graphs55

grown by our thermal process, at low temperature, achieve56

the required properties: they have a Hausdorff dimension of57

2, support the existence of unique straight lines, and satisfy58

Pythagoras’ theorem.59

1. Lattice graphs are taxicab graphs60

The natural way to measure the distance between two nodes61

on a graph is to count the edges in the shortest path which sep-62

arates them. A shortest path of this kind is called a geodesic.63

It is well known that with this measure of distance, the square64

grid graph has a taxicab geometry (14), where the distance65

between two nodes is the sum of the magnitude of the dif-66

ferences of their Cartesian coordinates (Figure 1). There are67

typically many geodesics between two nodes a distance λ apart,68

each resembling an irregular staircase. Together these form a69

geodesic bundle comprising Ngeo ∝ λ2 nodes. More complex70

lattice graphs show a similar phenomenon (Figure 2a).71

We prove that all doubly-periodic planar graphs have the72

taxicab metric, regardless of the complexity of the unit cell.73

Such graphs therefore do not satisfy Euclid’s axiom of a unique74

straight line between two points, nor Pythagoras’ theorem.75

Our proof is in two parts, which we call geodesic composition76

and geodesic rearrangement. We sketch the proof here, and77

give full details in the Methods section.78

Sketch of the proof. If we have a geodesic on a graph, it is79

clear that cutting it in two yields two paths which are also80

geodesics. Even in classical geometry, however, putting two81

geodesics (straight lines) end-to-end does not always give a82

geodesic: they need to be parallel. The situation with graphs83

is more interesting still.84

A doubly periodic planar graph must belong to one of the85

wallpaper groups, familiar from crystallography (and interior86

design). It will have a unit cell that may contain more than87

Fig. 3. Steinitz moves on a portion of a triangulation. The push move (left to
right) consists of choosing a node A and two (nearly, if Z is odd) opposite neighbors
P and Q. Node A is divided into nodes A′ and B. The pop move (right to left)
consists of choosing a node A′, and then one of its neighbors B. If no neighbor of
A′ that is not P , Q or B is connected to a neighbor of B that is not P , Q or A′,
then A′ and B are merged into A. In contrast to (17), which keeps track of triangular
faces, we avoid tetrahedra and bottlenecks smaller than 4 edges, so faces can be
assigned unambiguously, if desired.

one node. Equivalent nodes in different unit cells are said to 88

be of the same type. We first construct a geodesic between 89

two nodes of the same type, which are separated by a vector 90

distance (m,n) unit cells. If we choose the node type so that 91

this is the shortest of all such geodesics (or one of the shortest, 92

if the choice is not unique), then we are able to prove that 93

many copies of this path can be concatenated end-to-end, 94

and the result is still a geodesic. We call this the geodesic 95

composition property, and it is not trivial, since it can fail for 96

non-planar doubly-periodic graphs (Figure 2c). 97

Next, we show that a long concatenation of this single type 98

of geodesic can, apart from short tails at the ends, be broken 99

down into many alternating copies of two different geodesics. 100

The proof uses Dedekind’s pigeonhole principle (15), applied to 101

the number of nodes in the unit cell. If m and n are relatively 102

prime, these two geodesics are not parallel. They therefore 103

perform the role of the coordinate directions in the square 104

grid graph, and in the same way, can be re-arranged in any 105

order to produce many irregular staircase-like geodesics, all of 106

the same length. The set of these geodesics forms the broad 107

geodesic bundle, with an area proportional to the square of 108

its length: a complete contrast to the narrow lines required 109

by Euclidean geometry. 110

2. Growing disordered graphs 111

In light of the impossibility of generating Euclidean geometry 112

from planar lattice graphs, we turn to disordered graphs which 113

triangulate the 2-sphere. Triangulations here are graphs com- 114

posed of triangles which, when embedded in the 2-sphere, are 115

planar (16). We also require that they contain no tetrahedra. 116

We start from a seed graph, the octahedron, which is a simple 117

triangulation of the 2-sphere. We grow this through a series 118

of local Steinitz moves (17), which add (‘push’) or remove 119

(‘pop’) nodes while preserving this property (Figure 3). After 120

growth to a size of N nodes with push moves, we apply 8N 121

alternating push and pop moves to ensure equilibration. 122

All triangulations of the 2-sphere can can be transformed 123

into one another by Steinitz moves (17). Because every tri- 124

angular face has three edges, and every edge belongs to two 125

triangles, Euler’s polyhedron theorem (18) implies that the 126

mean degree of all nodes in a triangulation is 127

〈Z〉 = 6− 12/N. [1] 128

Since the integrated Gaussian curvature over a smooth, 129

closed surface is 4π (19), we see that if Z is the degree of a 130

node, κ ≡ 6 − Z is a natural measure of the local, discrete 131
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DRAFTFig. 4. Growing graphs at hgh and low temperatures; the third column shows the main result of this Article: a discrete model of Euclidean space. A small
octahedral triangulation, with N = 6 can be grown and equilibrated into larger graphs with N = 28, 210 and 212 nodes at (a) high temperature, (b) T = 0.5 in the curvature
model, or (c) low temperature in the walker model. The illustrative embedding into space shown here is irrelevant to our results; we are only interested in the graph.

equivalent of Gaussian curvature for the triangulation, up132

to a constant factor. If we consider a patch of the graph133

consisting of Npat nodes, with e exiting edges, and with a134

simple closed-path perimeter of length p ≥ 3 edges, then the135

Euler characteristic implies the average discrete curvature over136

all nodes in the patch is137

〈κ〉pat = (6 + 2p− e)/Npat. [2]138

Thus a Steinitz push move locally decreases |〈κ〉pat|, and a139

pop move increases it.140

To create an ensemble of graphs, we first define an energy E141

for every graph. We then repeatedly select a random node as142

a candidate for a push or pop move, and calculate the energy143

change ∆E that would result. We perform the move with a144

probability given by the Metropolis algorithm (20) with an145

associated temperature T .146

Curvature model. The most obvious choice of energy to reduce147

curvature fluctuations at low temperature is Ecurv =
∑

i
κ2
i ,148

where the sum is over all nodes i. As shown in Figure 4149

and also considered in (21), this does indeed drive the local150

curvature to zero almost everywhere at low temperature, but151

it does so by creating a branched polymer phase consisting of152

thin tubes with curvature trapped at their ends and junctions153

(Figure 4b). The result of this ‘curvature model’ is far from154

flat. We attribute this to the energy functional failing to155

sufficiently penalize small curvatures spread over large areas.156

Walker model. To address the deficiency of the curvature157

model, we introduce a second statistical process by putting158

walkers on the graph. Walker models have previously been 159

used to create scale-free (22) graphs from local rules (23, 24), 160

but here we are interested in Euclidean behavior. At each 161

time step, we add κ walkers of type +1 to every node with 162

κ > 0, and |κ| walkers of type −1 to every node with κ < 0. 163

Additionally, 12 walkers of type −1 are added to random 164

nodes to maintain the mean walker number from eq. (1). The 165

walkers then diffuse by moving to a random neighboring node. 166

Whenever a +1 and a −1 walker occupy the same node, both 167

walkers annihilate. Walker moves alternate with push-pop 168

moves, and we replace Ecurv with a new energy Ewalk for the 169

graph under push-pop moves: 170

Ewalk = −
∑
i

wi|wi|, [3] 171

where wi is the net number of walkers on node i. At low 172

temperatures, this energy tends to shrink regions of positive 173

curvature and grow regions of negative curvature. We call this 174

new evolution scheme, which biases the graph towards flatness 175

on long length scales, the ‘walker model’. 176

The walker model generates a triangulation which, at low 177

temperature and long lengths, appears qualitatively to have 178

minimal curvature (Figure 4c). To establish that these graphs 179

satisfy Euclidean geometry at long length scales, we subject 180

them to three tests: a Hausdorff dimension of 2; geodesic 181

confinement; and the Pythagorean theorem. 182

3. Testing our graphs 183

Euclidean geometry is defined through five axioms. These are 184

neither as logically primitive as they first appear, nor do they 185
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Fig. 5. Statistical tests for Euclidean behavior of our grophs. Top row: The
mean node eccentricity H and standard deviation for example points, divided by
N1/2, where N is the number of nodes. (a) The curvature model with T = 0.5
(black), 20, 22, 24, 26 (gray) and 105 (dashed) (b) The walker model, with T = 2−3

(black), 22, 23, 24 . . . 28 (gray) and 105 (dashed). Middle row: (c) The number of
nodes Ngeo in geodesic bundles of different lengths λ on a low-temperature walker
model graph with N = 215 nodes. (d) Fitted values for γ, where Ngeo ∝ Nγ

for graphs of different N . Bottom row: R is the ratio of the perpendicular length to
the edge side of an equilateral triangle drawn on a low-temperature walker model
with N = 215 nodes. Rsph is the exact equivalent on a smooth sphere [eq. (5)].
(e) R plotted against Rsph −

√
3 (we show a random sample of 250 from the full

set of 6078 points). The line is a linear regression and we extract the intercept as
a graph-theoretic estimate of

√
3. (f) Estimates of

√
3 by this method for graphs of

different size N . The dashed gray horizontal line is the exact value.

readily translate into conditions for discrete models of space.186

We therefore propose three conditions for any discrete model,187

including ours, purporting to capture Euclid’s geometry at188

large lengths. The first, Hausdorff dimension, sits outside189

the original axioms, since they concerned the plane. The190

second condition is the appearance of straight lines in the large191

length limit, which we call geodesic confinement. The third is192

the Euclidean metric itself, commonly known as Pythagoras’193

theorem, which is a synthesis of all the axioms.194

Hausdorff dimension. If the number of nodes in a ball of radius195

r scales as N ∝ rdH , then dH is the Hausdorff dimension of the196

graph. Interestingly, it is known that random triangulations197

of the 2-sphere lead to graphs with dH = 4 as they converge198

to ‘Brownian maps’ (13). To calculate the dimension of our199

graphs, we define the half-circumference H of a graph as the200

average over all nodes of the node eccentricity, where the201

eccentricity of a node is the greatest geodesic distance between202

it and any other node in the graph. If nodes are a measure203

of area, then we would expect a graph which approximates a204

smooth spherical surface with dH = 2 to satisfy the scaling205

H ∝ N1/2. This is not the case for the curvature model (Figure 206

5a), but is true for the walker model in the low temperature 207

limit for a large number of nodes (Figure 5b). The upwards 208

curvature of the solid gray lines in Figure 5b shows evidence 209

that this phase persists at non-zero temperature. 210

Geodesic confinement. In a doubly-periodic graph, the total 211

number of nodes Ngeo in the geodesics between two nodes a 212

distance λ apart scales as Ngeo ∝ λ2. From Figure 5cd, we see 213

that the scaling of Ngeo with N also approximates a power 214

law for the low-temperature walker model, but with a different 215

exponent: 216

Ngeo ∝ Nγ with γ ≈ 1.1. [4] 217

An exponent γ < 2 implies qualitatively different behavior to 218

the doubly-periodic lattice case, and in the limit N →∞, it is 219

consistent with the narrow geodesics (‘straight lines’) familiar 220

from Euclidean geometry. We call the collapse of the broad, 221

Ngeo ∝ λ2 geodesic bundles ‘geodesic confinement’ (Figure 222

2b), in analogy to the flux tubes and color confinement seen 223

in strong-force interactions (25). 224

Pythagorean theorem. Finally we consider the validity of 225

Pythagoras’ theorem on graphs generated by the walker model. 226

Although this can be proved in general for Euclidean geometry, 227

on graphs we are only able to provide a test. If we draw an 228

equilateral spherical triangle on a smooth 2-sphere, with side- 229

length Λ times the half-circumference, the ratio of the length 230

of the perpendicular of the triangle to half its edge length is 231

found, from spherical trigonometry, to be 232

Rsph(Λ) ≡ 2
πΛ arccos

[
cos(πΛ)

cos(πΛ/2)

]
=
√

3 +O(Λ2). [5] 233

The same ratio R can be calculated for a graph (Figures 5ef, 6), 234

and although the fluctuations are significant, they appear to 235

be unbiased, so that performing linear regression of R against 236

Rsph gives an estimate for
√

3 one standard deviation from 237

the traditional value: 238

√
3est = 1.726± 0.005. [6] 239

4. Methods 240

Our proof that all planar lattice graphs satisfy the taxicab 241

metric is in two parts, which we call geodesic composition and 242

geodesic rearrangement: 243

Geodesic composition. Consider a doubly-periodic planar 244

graph made up of identical unit cells, each of which com- 245

prises ω distinct nodes. Equivalent nodes in different unit cells 246

are said to be of the same type. Let Gpp(v) denote a particular 247

geodesic between two p-type nodes separated by v = (m,n) 248

unit cells. 249

We first prove that for any displacement v, for at least one 250

node type p, the concatenation Gpp(kv) of k copies of Gpp(v) 251

is also a geodesic (Figure 7a–d). Let p be the node type which 252

minimizes Gpp(v); call this the optimal node assumption. Let 253

p0p1 of length |p0p1| = λ be a geodesic between p0 and p1 254

(Figure 7a); call this the v-geodesic assumption. Let p0p1p2 255

be two copies of p0p1. 256

Now suppose there is a path p0abp2 with length |p0abp2| < 257

|p0p1p2| = 2λ (Figure 7b); because the graph is planar, nodes 258

a and b exist. Then |ab| < λ or |p0a|+ |bp2| < λ. If the former, 259
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Fig. 6. Equilateral triangles on the plane and on a graph. (a) An equilateral
triangle drawn on the Euclidean plane with straightedge and compass, where M is
half-way between A and B, and MC/AM =

√
3. (b) The same construction using

geodesics on a low-temperature ‘walker model’ graph (which approximates a smooth
sphere) with N = 216 nodes and triangle side length of 32.

then we contradict the optimal node assumption. If the latter,260

we contradict the v-geodesic assumption. Therefore p0p1p2 is261

a geodesic between p0 and p2. That is to say, Gpp(2v), which262

is the concatenation of 2 copies of Gpp(v), is a geodesic. Call263

this the 2v-geodesic property.264

We now show that the (k − 1)v-geodesic property implies265

the kv-geodesic property (Figure 7c for k = 3). Suppose there266

is a path p0abpk with length |p0abpk| < |p0p1 . . . pk| = kλ.267

Then |ab| < λ or |p0a|+ |b pk| < (k−1)λ (Figure 7d for k = 3).268

If the former, then we contradict the optimal node assumption.269

If the latter, then we contradict the (k−1)v-geodesic property.270

Therefore p0p1 . . . pk is a geodesic between p0 and pk. This271

completes the first part of the proof.272

Geodesic rearrangement. We next prove that for most dis-273

placements v, for at least one node type p, the geodesic Gpp(kv)274

consists of three parts: a tail at each end, which joins the nodes275

p0 and pk to copies of some other type of node q, and between276

the tails, k−1 alternating copies of Gqq(u) and Gqq(u′) (Figure277

7ef). We now only consider displacement vectors v = (m,n)278

such that m and n are relatively prime (which occurs (26)279

for random m and n with probability 6/π2 ' 0.61) and large280

enough so that λ > 2ω, where ω is the number of distinct281

nodes in the unit cell. By Dedekind’s pigeonhole principle282

(15), since λ/ω > 2, Gpp(v) must pass through at least two283

nodes of some other type q different from type p (Figure 7e).284

Therefore we can define a sub-geodesic Gqq(u) within Gpp(v),285

and a second geodesic Gqq(u′) between the node q in adjacent286

copies of Gpp(v) (Figure 7f).287

Because m and n are relatively prime, u and u′ cannot be288

parallel. To see why, let the displacement u be (i, j) and the289

displacement u′ be (i′, j′) and assume i′ ≥ i. Since u ‖ u′
290

implies i/j = i′/j′, (m,n) = (i + i′, j + j′) = (1 + i′/i)(i, j),291

where i′/i is an integer, contradicting (m,n) being relatively292

prime.293

The k − 1 alternating geodesics can be rearranged in any294

order, forming a set of staircases between the end q nodes295

(Figure 7f). The geodesic bundle occupies an area of mn(k −296

1)2 unit cells. This completes the proof.297

Computer code. The simulation code to generate the figures298

and statistics is available from from Sourceforge under the299

name ‘ThermalEuclid’. The code is written in the C program-300

ming language, using the open source ‘freeglut’ library for301

graphics.302
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Fig. 7. All doubly-periodic planar graphs have a taxicab metric on long length
scales. (abcd) A grid of unit cells forms a doubly-periodic planar graph; nodes within
the unit cells not shown. For some node type p, if p0p1 is a shortest path between
nodes separated by v = (m,n) unit cells, then p0p1 . . . pk is the shortest path
between nodes separated by kv unit cells. (ef) For m and n relatively prime, the
geodesic Gpp(kv) is the concatenation of k−1 copies of both Gqq(u) and Gqq(u′),
with tails at either end. See the text for details.

5. Discussion 303

We have shown that discrete space and Euclidean space, 304

thought by many to be at odds, are indeed compatible. We 305

avoid Zeno’s paradox because we do not require our model 306

to be infinitely divisible. We avoid Weyl’s tiling argument 307

because our model is disordered. Weyl’s argument is in fact 308

an observation that certain non-planar lattices display the 309

taxicab metric, which is unsurprising given our proof that all 310

planar lattice graphs do. 311

No embedding space. Smooth surfaces which are discrete at 312

an atomic scale frequently arise in nature, such as liquid 313

menisci or crystal surfaces (27). These atomic systems are 314

embedded in a background manifold, consisting of ordinary, 315

flat, three-dimensional space. This embedding manifold allows 316

distance on the surface to be defined in the usual Euclidean 317

manner, and also means that normals to the surface exist. 318

The system energy can then depend on extrinsic curvature 319

(the spatial gradient of these normals), as well as intrinsic 320

(Gaussian) curvature. Our graphs, by contrast, do not live 321

in a background space. Instead, our measure of distance and 322

curvature can only be intrinsic, defined in terms of edges 323

(distance) and node degree (curvature) that are properties of 324

the graph itself. No normal vectors to our graph manifolds 325

exist. 326

Phase transition. Phase transitions which create or destroy 327

smoothness are well known in physics. A roughening tran- 328

sition (27) can turn flat crystal facets into smooth, curved 329

surfaces, as measured with the metric of the embedding space. 330
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More strikingly, the crumpling transition of membranes (28)331

turns flat crystalline membranes into crumpled balls. How-332

ever, the irregular, jagged curvature of the crumpled phase333

is entirely extrinsic: a function of its embedding in three-334

dimensional space. The intrinsic, ordered, taxicab geometry335

of the membrane itself is unchanged through the crumpling336

transition.337

In contrast, the phase transition we find at low temperature338

in the walker model changes the intrinsic metric of the graph339

from a crumpled, non-Euclidean ‘Brownian map’ (13) into340

smooth, Euclidean space. It is unclear, however, whether this341

Euclidean phase occurs at all temperatures for sufficiently342

large graphs, or only below a finite transition temperature. A343

renormalization group analysis of the model may shed light344

on this question.345

Walker model. The phase transition which creates continuum346

geometry is driven by a statistical walker process. The moti-347

vation for this comes from the naïve curvature model, which348

minimizes the sum of the squares of the local discrete curvature349

κ, but disappointingly gives rise to a ‘Medusa’ phase (Figure350

4b). This pathological behavior is consistent with previous351

investigations of triangulations, which lead to branched poly-352

mer phases and other exotic geometries rather than smooth,353

homogenous space (21, 29). The pathologies are due to concen-354

trations of discrete curvature in confined regions, or large, local355

curvature fluctuations. Our walker process – which solves a dis-356

crete version of Poisson’s equation, with the charge being the357

curvature κ – ultimately acts to diffuse these concentrations358

over large length scales.359

A background for simulations. A practical application of our360

Euclidean graphs is as a background for simulations. Lattices,361

such as the square grid, are intrinsically anisotropic, so special362

care is often needed when designing simulations to run on363

them. The rotational symmetry of our graphs makes them364

suitable spaces on which to run simulations, such as lattice365

gas cellular automata (30).366

Higher dimensions. We have built discrete space that behaves367

like two-dimensional Euclidean space at large lengths. Can368

the same be done for higher dimensions? While more compu-369

tationally intensive, we believe our walker model generalizes370

to three dimensions and beyond. In three dimensions, the key371

step is extending the Steinitz moves in Figure 3 to add and372

subtract tetrahedra, rather than triangles, as nodes divide373

and fuse. Whether the resulting graph will be Euclidean is,374

however, unknown. Our tests for geodesic confinement and375

the applicability of Pythagoras’ theorem are benchmarks for376

this and any other discrete models attempting to capture377

Euclidean geometry at large lengths.378

We conjecture that the absence of geodesic confinement379

carries over to higher dimensional lattices, as it clearly does for380

the three-dimensional regular grid. Unfortunately, the proof381

does not readily follow from our theorem in two dimensions,382

which relies on planarity, since all three-dimensional lattices383

are non-planar. Figure 2c gives an indication of the subtlety.384

It shows a non-planar two-dimensional lattice that does not385

satisfy geodesic composition, a key step in our proof (see386

Methods).387

Other metrics. We have shown how to grow graphs with a388

Euclidean metric, that is, to satisfy Pythagoras’ theorem,389

d2 = x2 + y2 for the distance d and orthogonal directions x 390

and y. What about other metrics? The most sought-after 391

of course is the Minkowski metric from special relativity, the 392

two-dimensional analog of which is d2 = (ct)2 − x2, where t 393

is a time direction and c the speed of light. How to represent 394

this as a graph is an open question, because nodes must 395

be intricately connected at large coordinate displacements. 396

Taking an approach similar to causal set theory (3, 4), but 397

with neighbours separated by unit proper time, would suggest 398

that the degree of each node diverges with the logarithm of 399

the volume of space-time (or worse, as a power, for higher 400

dimensions). Furthermore, unlike Euclidean space, where the 401

square grid graph at least models a 4-fold rotational symmetry, 402

it is not possible to construct a lattice graph which is symmetric 403

under even a discrete version of the Lorentz transformation. 404

Thus, it remains to be seen whether some variant of the walker 405

process can be defined to probe and engender the fabric of 406

space-time. 407
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