PHYSICAL REVIEW E 94, 052410 (2016)

Optimal counter-current exchange networks
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We present a general analysis of exchange devices linking their efficiency to the geometry of the exchange
surface and supply network. For certain parameter ranges, we show that the optimal exchanger consists of densely
packed pipes which can span a thin sheet of large area (an “active layer”), which may be crumpled into a fractal
surface and supplied with a fractal network of pipes. We derive the efficiencies of such exchangers, showing the
potential for significant gains compared to regular exchangers (where the active layer is flat), using parameters

relevant to biological systems.
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I. INTRODUCTION

The design of efficient exchange devices is an important
problem in engineering and biology. A wide variety of
heat exchangers, such as plate, coil, and counter-current,
are employed in industrial settings [1], while in nature,
leaf venation, blood circulation networks, gills, and lungs
have evolved to meet multiple physiological imperatives. A
distinctive feature of the biological examples is their complex,
hierarchical (fractal) nature [2], with branching and usually
anastomosing geometries [3,4]. It is clear that one reason for
this is the possibility to include a large surface for exchange
within a compact volume, as in the human lungs, which
comprise an alveolar area greater than 50 m? [5]. However,
maximal surface area is unlikely to be the only criterion
for optimization [6,7]. As an example, West et al. have
analyzed biological circulatory systems on the basis that power
is minimized with the constraint that a minimum flux of
respiratory fluid is brought to every cell in the volume of
an organism, and were able to explain well known allometric
scaling laws in biology [2].

Although scaling behaviors are known in some cases, the
detailed geometry of optimal exchangers remains elusive.
With the advance of new fabrication technologies such as
three-dimensional printing [8], it is becoming possible to build
structures of comparable complexity to biological systems,
so there is a need not only to understand the principles and
compromises upon which natural systems are based, but also
for that understanding to be constructive, mapping system
parameters to actual designs.

The analytic literature in this area has focused on heat
transfer from a fluid to a solid body, with a particular
emphasis on cooling of integrated circuits [9]. Branching
fractal networks are much studied due to their ability to give
good heat transfer with a low pressure drop [10,11] (although
sometimes simpler geometries can be more efficient [12]), and
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multiscale structures are also found to have a high heat transfer
density [13].

In this contribution, we consider exchange as a general
process, which includes gas, solute, and heat exchange, and
we look for the optimal designs which can ensure complete
exchange (to be defined below) while requiring a minimum
amount of mechanical power to generate the necessary fluid
flows.

We use the language of thermal processes, since the relevant
material properties have widely used notation. However, with
a suitable translation of quantities, the analysis also applies to
mass transfer. For example, in a thermal system with linear
materials, the quantities temperature, heat, heat capacity per
unit volume, and thermal conductivity would correspond in
a system of gas exchange to partial pressure of gas, mass of
gas, Henry’s law coefficient and the product of the Henry’s
law coefficient, and gas diffusivity. For mass exchange with
solutes, the analog of temperature would be osmotic pressure
of the solute.

II. NONDIMENSIONALIZATION

The first step is to gather problem parameters into dimen-
sionless groups, which span the space of possible exchange
problems.

Suppose there are two counter-flowing (perhaps dissimilar)
fluids with given properties: thermal conductivities «; (j €
{1,2}), heat capacities per unit volume C;, and viscosities
n;. Let there be an imposed difference AT in the inlet
temperatures, and an imposed volumetric flow rate Q; of fluid
1 (while we are free to choose (Q»). For example, if we are
considering thermoelectric generation from the exhaust gases
of a vehicle, Q| would be the volumetric flow of exhaust gases.
Analogously, in gas exchange for vertebrate respiration, we
take the required blood flow to the lungs or gills as the fixed
quantity Q.

The fluid streams between which exchange occurs are
assumed separated by walls of thickness w (taken to be
the minimum consistent with biological or engineering con-
straints) and thermal conductivity ky,y; the latter again an
imposed constraint. We assume that the exchanger needs to
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be compact, in that it fits inside a roughly cubical volume
of side length L, and the pipes, being straight, are each
of length L < L. Last, we wish the exchange process to
go to completion, in that the total exchanged power is of
order Ecng = C1 Q| AT, whichresults in the outlet temperature
of flow 1 being equal to the inlet temperature of flow 2
(and conversely if the exchanger is “balanced,” i.e., Q1C; =
0,C»). Our aim is to find an exchange network which satisfies
all these constraints (which we believe are a typical set for
both engineering and biological systems), while requiring the
minimum amount of power to drive the flow through the
network.

To proceed, we nondimensionalize on Ly,x and kyqy,
defining the new quantities:

W

W/ Lax, fj = rj/LmaXs L= L/ L,
A=A/L?

mae and K = kj/Kyal.

The specification of the problem can be conveniently reduced
to three nondimensional parameters, the first two of which
capture the asymmetry of the two fluids:

B =(Ci/C)*(n2/m) and y = «ki/ko. (1)

We then note that if all the available volume were filled with
pipes of the smallest possible radius, and the two fluids were
set to uniform temperatures differing by AT, then there would
be a maximum possible exchanged power of order Ep.x =
AT kg L3 / w?. Thus our last parameter is the ratio of the

max
required exchange rate to this maximum:

€= Eend/Emax = 0:C wz/(LTBnawaall)a 2)
and we typically expect € < 1.

III. OPTIMAL REGULAR EXCHANGERS

We consider a regular array of counter-flowing streams in
N; straight pipes of radii ; (j = 1,2 being the two types of
pipe) and length L (the same for both types), where we initially
ignore any feed network to supply the individual pipes. This
regular array is shown in Fig. 1(b), and we describe this array of
pipes as the “active layer.” since it is where exchange actually
occurs.

To proceed, we make three geometric approximations:
First, assuming roughly circular pipes, we approximate the
total cross section (perpendicular to flow) of the array as

A~ TNi(r) + w/2)* + 7 Na(ry + w/2)% (3)

Second, let o be the area across which exchange occurs, then
if no clustering of one type occurs o will be approximately
the minimum of the two pipe perimeters, multiplied by L. We
thus propose a simple approximation to the total area across
which exchange occurs:

a ~ [(N\2rr L)~ + (N2 L)' 7" )

Third, we approximate the thermal conductance per unit area
across which exchange occurs to be

s & [(w/Kwan) + (r1/K1) + (r2/12)] 7" (5)

When is exchange complete? We assume the pipes are
slender, so that heat diffusion along the length of a pipe is
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FIG. 1. (a) Schematic of the geometry of a counter-current heat
exchanger “active layer” fitting inside a prescribed cubic volume of
side length L,«. (b) Detail of the active layer, showing a regular array
of pipes carrying alternately counter-flowing streams. (c) The active
layer connected to a branching and (on the other side) anastomosing
fractal supply network.

negligible compared to across its width (and also to advective
transport along its length), and that the temperature over a cross
section perpendicular to its length is roughly uniform. Let z be
the distance along a pipe, with z = 0 being the upstream end
of fluid 1 and the downstream end of fluid 2, so the average
temperatures over cross sections of each of the two types of
pipe are T(z). We define the difference of inlet temperatures
to be AT = T1(0) — T»(L). By considering the total heat flux
per unit length J(z) between the two sets of pipes, we can
write down the material derivative of temperature as each fluid
moves along its respective pipe:

ol (=) J(z) (6)
"%y 2),

where, since the average flow speed in the pipes of type j €
{1,2}is Qj/(NjnrJz), the material derivative is

9 9
]\G‘ﬂ,’f‘j2 3Z‘
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If s is the thermal conductance per unit area between pipes,
we note:

J(z) = as[Ti(z) — Tr(z)]/L. ()

In the steady-state regime, d/9¢ = 0 so Eq. (6) leads to an
exchanged power E given by

E b5 — o)
sa AT - %'zel/&:l —5131/52

£ = Q,C;/(as). (10)

Complete exchange means E ~ C; Q; AT, which from Eq. (9)
is equivalent to &; < & and &; < 1. We note from the analysis
accompanying Eq. (9) that there is a special case of a balanced
exchanger, in which Q,C; = 0,C, (so & = &) and the
change of temperature with z for both streams is linear, rather
than being exponential. The optimal exchanger should have

~ min(1,£,5), 9
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this property, since otherwise some of the pipe length will
contribute to dissipated power but not exchange. Thus Q5 is
determined by the imposed value of Q;.

Now we seek to minimize the total power P required
to run the exchanger, P = QAp| + Q>Ap,, where Ap;

TABLE I. Estimated parameters for various real systems. “S.I.”
refers to the international system of units; so for thermal systems C
will have units Jm ™ K~! and « will have units Wm~' K~'. For gas
exchange, C will have units kilogram of relevant gas per m? of fluid,
per Pascal of partial pressure, and « will have units kgs™' m~! Pa~!
(so that x/C is a diffusivity). “T.E.G.” is thermoelectric generation
from internal combustion engine exhaust [14] (we have chosen values
corresponding to a car or personal automobile). For the animal
respiratory systems we assume that transport across the exchange
membrane is similar to that of water. For blood, we assume that
oxygen can exist in a mobile form (dissolved in the waterlike
serum) and an immobile form (bound to hemoglobin). Thus the
oxygen “conductivity” x; for blood is the same as for water, while
C; is increased over that of water by the carrying capacity of
heme. Data are from Refs. [16-20]. Results for a regular exchange
network are indicated by the subscript “reg”; while the results for
the fractal exchange surfaces (denoted by a subcript “frac”) use a
Hausdorff dimension d = 2.33. For the cases of pigeon and salmon
respiration, we impose the additional constraint that r; > 5 um, in
order to allow erythrocytes to pass through blood vessels (type 1
pipes). This appears to only affect the fractal case, and without this
requirement, the optimized value of r; for this fractal case would
be 1.5 and 0.4 um for pigeon and salmon, respectively. We have
also ignored the non-Newtonian nature of blood rheology (small for
blood plasma [21]) and the possibility for soft particles (and even
simple nonlinearities [22]) to cause complex [23] and even chaotic
flows [24].

System: T.E.G. Pigeon Salmon

Exchanged: Heat Oxygen Oxygen

Lipax/m 2.0 x 107! 5.0 x 1072 2.0 x 1072
w/m 5.0 x 107 5.0 x 1077 5.0 x 1077
Q;/m’s7! 5.0 x 1072 2.0 x 1073 1.0 x 1076
C,/SL 1.0 x 103 2.0 x 107° 2.0 x 107°
C,/S.1L 1.0 x 10° 1.3 x 1073 1.0 x 1077
k1/S.L 4.0 x 1072 1.8 x 10716 1.6 x 10716
Kk2/S.I. 4.0 x 1072 2.3 x 10710 1.6 x 10716
Kyan/S.I. 1.0 x 10! 1.8 x 10716 1.6 x 107'°
ni/Pas 4.0 x 1073 4.0 x 1073 4.0 x 1073
n./Pas 4.0 x 1073 4.0 x 1073 1.0 x 1073
B 1.0 x 10° 2.4 x 107 1.0 x 10?

y 1.0 x 10° 7.8 x 1077 1.0 x 10°

€ 1.6 x 10™* 4.4 x 1074 3.9 x 107*
Tl reg/M 1.0 x 1073 2.5 x 1073 5.2 % 107°
72 reg/M 1.0 x 1073 22 x 107 2.1 x 1073
Areg/m? 4.0 x 1072 2.5 x 1073 4.0 x 107
Lye/m 2.0 x 107! 5.0 x 1072 2.0 x 1072
Preg /W 2.4 x 10! 6.2 x 107! 7.7 x 107!
71 frac/M 51 x 10~ 5.0 x 107 5.0 x 107°
72 frac/M 5.1 x 10~* 54 x 1077 7.3 x 107°
Afpae/m? 6.6 x 1072 1.0 x 1072 7.6 x 107*
Lirpe/m 4.3 x 1072 7.1 x 107* 2.9 x 1073
Prrac/W 1.8 x 10! 6.0 x 1072 4.0 x 107!
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are the pressures dropped across the two types of pipes.
For laminar (Poiseuille [15]) flow, and using the balanced
condition Q,C; = Q,C> to eliminate Q,, we obtain

. B )
P = Py’ +—= ). 11
0 <N1l¢it Nﬁ;‘ (4
Py = 8nikpy Liay/ (Tw*CY). (12)

Our task is to minimize the power P to drive the flow in Eq. (11)
by choosing the five quantities N, #;, and L, while ensuring
the exchanger is compact (fits in the required volume):

max(?;) < L < 1, (13)
A=aN\GF +w/2*+aN(Fr +w/2)* <1,  (14)

and also that exchange is complete, which from & < 1 and
Egs. (4), (5), and (10) leads to

€ ( LR )<A+fl+f2><1 (15)
=< = = w - - NS
W2x L \Ni#1  Noip K1 k2

The optimization can then be performed numerically with the
constraints (13), (14), and (15). We do this in two different
ways, which give essentially identical results: we either
repeatedly choose a random direction in the five-dimensional
space of (N;,7 j,I:) and follow this direction until either the
dissipated power does not fall or a constraint is encountered; or,
we impose completeness of exchange in Eq. (15) as an equality,
which allows us to determine L given the other variables, and
then perform an exhaustive search for the minimum power
over the more tractable four-dimensional space (N;,7).

Table I shows the geometry of some optimized regular
exchangers for real cases, and the optimized results are
included in Fig. 2 with the label “regular.”

[+ — O TEG (regular)

O—O Pigeon (regular) | |

[>- > Salmon (regular)
TEG (fractal)
Pigeon (fractal) | -

Salmon (fractal)

_ ! !
85 -4 -3 2

log,(€)

FIG. 2. Plots of power dissipated in exchange for the three cases
of Table I. Here we change Q; to achieve different values of e.
The actual cases in Table I are shown as symbols. For the cases
of “pigeon” and “salmon,” we additionally impose the constraint
that blood vessels (type 1 pipes) should be large enough to carry
erythrocytes (taken as the condition r; > 5 um).
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IV. SCALING OF REGULAR EXCHANGERS AND
LIMITING CONDITIONS

It is interesting to look at what limits the exchanger
efficiency in different cases. For the examples studied here, the
numerical results show that over essentially the entire range of
€, Egs. (14) and, unsurprisingly, (15) are satisfied as equalities.
Furthermore,  is typically much less than 7; or 7; /& ;.

For symmetric exchangers, where Ny = N, 7| = 7», and
K1 = ko, we can see the consequences of this for the scaling
behavior with €, because Eqgs. (14) and (15) reduce to

- € 2 7
2n N7y ~ 1 and ~ —— =~ 1, (16)
W22m L NiFy &y
which implies the dissipated power
P = 161 Pye’ /(R D). (17)

Two observations follow from this rough analysis: First,
the dissipated power in this approximation does not depend
on f,, so that although the numerical results indicate that
optimization pushes L towards unity, this is only a weakly
selected result. Thus exchangers with very similar dissipated
power can be made from rather thin active layers [as shown
schematically in Fig. 1(b)] without incurring a strong penalty.
This is useful in allowing room for the supply network that we
will wish to attach to the active layer.

Second, an interesting question to ask for an optimal
exchange network is, which constraint is significantly limiting
the performance? The nontrivial constraint in this case is
typically the area A of the active layer in Eq. (14), which
we would prefer to make larger than L2, .

Taken together, these observations imply that a route to
further optimization is to have an active layer which is both
thin and also folded in some way to accommodate a larger
area inside the prescribed volume of the device, an approach
we will pursue further in Sec. VI below.

V. THE BRANCHED SUPPLY NETWORK

So far, we have considered the active layer of the exchanger
as an independent entity. However, it must be supplied with
the two working fluids, and for the optimization scheme above
to be relevant, this supply network, which dissipates power
but performs no significant exchange, should not dominate the
power consumption of the whole device.

Consider therefore a branched (and fractal) supply network
shown in Fig. 1(c), which brings the streams to the exchanger’s
active layer. In contrast to Ref. [2], we do not need the supply
network to pass close to every point in space. Suppose that each
pipe comprising the supply network branches into b smaller
pipes at each hierarchical level k of the tree (where pipes with
higher values of k are smaller, and closer to the active layer
where exchange occurs). Let the ratio of pipe radii between
neighboring levels be p < 1, and the ratio of pipe lengths be
A. The ratio of power dissipated between hierarchical levels is
therefore

Peii/Pe = 1/(bp*). (18)

Since the active layer is densely covered with pipes, the
condition to fit the supply network into space is p > b~!/%.
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Therefore, provided A > bp*, the power will increase expo-
nentially with k and the overall power dissipation in the supply
network will be of the order of that in the last layer, and
therefore of the same order as in the active layer. The supply
network will therefore not dominate the power dissipation.
As an example from biology, for the human arterial system
Murray [25] proposed the law that at a branch point, the sum of
the cube of diameters of outgoing vessels is equal to the cube
of the incoming vessel. Thus for binary branching (i.e., b = 2),
p =271 with y =3. If vessel lengths are proportional
to their diameter [26] we obtain Pii,/ Py = 23/~ For
Murray’s original law, this would imply Piyi/Pr =1 and
ignoring the supply network would be invalid. However,
experimentally it is found that for arteries (see [26,27], and
references therein) that y is in the range 2.6-2.7, except in
capillary beds, so our analysis may still be applicable.

VI. FRACTAL EXCHANGE NETWORKS

From the solution above for optimum regular exchange
networks, the lateral cross section A always expands to its
maximum value L2 . If this restriction were lifted, a more
efficient exchanger would likely be possible. This can be
achieved by allowing the active layer (provided it is thin
enough, and can still be provided with a branching supply
network) to be corrugated, while still fitting within the
prescribed roughly cubical volume L3  available. One way
to do this is to turn the active layer into an approximation
to a fractal surface. Thus suppose the active layer to be
corrugated into such a fractal surface over a range of lateral
length scales down to a scale x > L (where L is the pipe
length, and therefore the thickness of the layer). In the limit
x — 0the surface would have some Hausdorff dimension [28],
which we denote d. Figure 3 shows schematically an example
in which the surface is the type I quadratic Koch surface
with (in the limit) Hausdorff dimension dgoey = In13/1n3 =
2.33. Let the area of the active layer be A(x), where

FIG. 3. Top row: Schematic of the active layer of Fig. 1(a),
corrugated into a hierarchical (fractal) surface, comprising (left to
right) greater area and more iterations of the fractal. Bottom row:
Schematic section through these surfaces showing the fractal supply
network in the interior (the corresponding network outside is not
shown, and will require a more complex design to ensure equal flow
to all parts of the active layer).
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A(Lmax) = L2, then from Hausdorff’s definition of dimen-

max?

sion, we see that A(x) = L2 (x/Lmax)>~¢. We can therefore

replace the inequality A < 1 in Eq. (14) by
A =Ni(F + /2 + N2y + /2> < L. (19)

Figure 2 shows the effect of € (varied through altering Q)
on the power dissipation for fractal exchangers corresponding
to the scenarios in Table I, compared to that of the regular
exchanger. Corrugating the exchange layer into a type I
quadratic Koch surface leads to a significant reduction in the
dissipated power for the two biological cases (factor gain of
10 for pigeon lungs and 2 for salmon gills). However, the
small size of the optimum pipe radii »; may mean that this
degree of optimization is precluded by other considerations.
For instance, erythrocytes need to be able to pass through these
type 1 (blood carrying) vessels.

Crumpling the active layer into a (limited length scale)
fractal surface would also be expected to produce a novel
scaling of dissipated power with €. The numerical results
indicate that in the optimum exchanger A expands to its new
maximum extent, so Eq. (19) is an equality. As above, Eq. (15)
is an equality, but we find for the TEG case that o is comparable
to 7, while ¥ remains substantially less than 7; /& ;. This leads
in the symmetric case to the following versions of Egs. (19)
and (15):

O 5 any 27 2 2m Lo
—Nw° =L and — — | = (20)
4 K1 N] r €
(the first assuming for definiteness W =~ 71), which implies the
dissipated power is

2/3-d)
P~ (;) ”50kfl—d)/(S—d)é(s—d)/o—d)' @1
W

For the quadratic Koch surface, this leads to P €*91 which
is close to the observed exponent in Fig. 2. We also note that
L o €'/3=D_ which increases with €.

As the fractal dimension d of the active layer is increased
towards the upper limit of 3, the dissipated power P is likely
to fall. However, the assumptions that were used to derive
Eq. (21), namely, w ~ #; < #;/k;, may at some point cease to
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be valid, so the scaling of P with d in Eq. (21) will break down
at a point which is case specific. For example, in the human
pulmonary system (although not a counter-current network
and not symmetric), the fractal dimension of the set of alveoli
is believed to be three down to small scales [29] (Hou et al. [30]
provide arguments that this is optimal). Equation (21) becomes
singular in the limit d — 3, so cannot apply, although we
believe Eqgs. (11), (12), (13), (15), and (19) should still hold if
a suitable supply network can be designed.

VII. CONCLUSIONS

Exchange networks of the class we show here exhibit
broadly power-law dependence of the dissipated power with
the quantity €, which measures the required throughput: the
rate of exchange of heat, gas, or solute needed. This is true
both for a fractally corrugated or a simple regular array of
exchange pipes. However, the fractal exchangers demonstrate
gains in efficiency when compared to regular exchangers for
small values of €, and in particular for parameters relevant to
biological systems. This is driven by the higher efficiency
of a thin active exchange layer of large area; the fractal
corrugations being one way to accommodate this geometry
in a compact volume. At higher throughput (larger €) the
optimal thickness of the active layer increases, so the number
of fractal generations in the corrugations falls. Because of
this, the dissipated power converges towards the value for the
regular exchange network.

We note that the analysis we have performed here aims
specifically to minimize required power while ensuring
complete exchange has taken place and compactness of the
exchange device. In practice, other design constraints may
need to be included; for example, a requirement that the
network be robust [3] or easily repairable [31,32] under
external attack [33,34]; or the cost of building the network
may be significant compared to its operating costs [35,36].
Nevertheless, the conditions analyzed here are, we believe,
relevant to a wide class of engineering and biological systems
and could provide the basis for improved industrial efficiency
and insights into the structures used for respiration in the living
world.
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