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Abstract
Energy is a crucial concept within classical and quantum physics. An essential tool to
quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian
in general probabilistic theories—a framework in which quantum theory is a special
case. We list desiderata which the definition should meet. For 3-dimensional systems,
we provide a fully-defined recipe which satisfies these desiderata. We discuss the
higher dimensional case where some freedom of choice is left remaining. We apply
the definition to example toy theories, and discuss how the quantum notion of time
evolution as a phase between energy eigenstates generalises to other theories.

The central conception of all modern physics is the “Hamiltonian”
Erwin Schrodinger
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1 Introduction

Energy is a central concept in classical and quantum physics, and hence plays a sig-
nificant part in all of physical science [1,2]. The dynamical behaviour of mechanical
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systems can be understood in terms of energy conservation [3]. Without energy, there
can be no thermodynamics. Meanwhile, quantizing the allowed energies of electrons
trapped around nuclei gives rise to atomic structure, leading to the periodic table and
chemistry [4]. For a physical theory to be practically useful, it seems it should possess
an analytic tool for the systematic treatment of energy.

The Hamiltonian is one such tool in classical and quantum physics, serving a dual
role: (i) It is a physical observable—some measurable quantity—that acts as a con-
served quantity, determining conserved quantities in classical mechanics and good
quantum numbers in quantum mechanics through the Poisson bracket and commuta-
tor respectively. (ii) It is the generator of time evolution—it dictates the dynamical
behaviour of systems changing with time. These two roles particularly come together
in thermodynamics, wherein it functions as a conserved quantity in the first law, and
also defines the natural thermal state that systems tend towards (in the form of the
Boltzmann distribution, whose form is similar to that of Hamiltonian evolution, but in
imaginary time).

There is a recent paradigm that views quantum theory as a special case in a wider
framework of theories known as the convex framework or generalised probabilistic
theories (GPTs) [5–8]. Within this framework one can formalise alternative theories
that go beyond quantum theory (e.g. by allowing for states with stronger correlations
than the maximally entangled quantum states [9]). This framework attracts significant
foundational interest for a variety of motivations, including: (i) to derive quantum the-
ory from natural axioms by firstly considering awider set of theories and then applying
axioms to rule all but one out [5,7,10–13], (ii) to identify the specific features of quan-
tum theory responsible for particular phenomena [14,15] (iii) to understand the foun-
dational basis of quantum cryptography: by its operational and data-focussed nature,
the convex framework allows for the stripping away of unnecessary concepts. This
makes it easier (for example) to consider device-independent cryptography [16–18].

At its core, the convex framework is information-theoretical, and data-driven: it
focuses primarily on observable statistics, rather than the underlying mechanisms
generating them. There is thus interest in developing the connections between this
framework and traditional physical principles. Among many examples, consideration
has been given as to what is required to arrive at thermodynamical concepts within
this framework [19–28], what sort of particles could exist in alternative theories [29],
what interference fringesmight we see [13,30–36], which theories allow for tunnelling
through energy barriers [37], and the potential computational power of machines in
certain GPTs [38–44].

Exciting recent results from [13] have shown the value of introducing the concept
of the Hamiltonian as both an observable and generator of evolution in order to select
quantum mechanics among other rival theories. Starting from other axioms (that limit
the theories to Jordan algebras), they use the existence of such an energy observable
assignment to single out quantum theory. Meanwhile, in [15], information-theoretic
axioms are used to recover key properties of statistical mechanics, such as entropy
and Landauer’s principle.

However, there is still an important piece missing in this field that we aim to address
here: namely how to concretely defineHamiltonians in awide range of convex theories
other than quantum theory. Here, we do not attempt to rederive quantum theory (and
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so do not seek a complete list of axioms as per [13] that would single out quantum
theory), but instead list a set of desiderata that we believe any reasonable definition of
a Hamiltonian should have. By doing so, we provide a firmer base to enable progress
in a wide range of questions involving energy.

We proceed as follows: we review the role of the Hamiltonian in quantum theory,
taking a geometric approach in which the Hamiltonian can be represented as a real
vector and the axis of rotation. We list and justify desiderata for a Hamiltonian defi-
nition in general theories, and analyse their implications. Focusing on 3-dimensional
theories,1 we give an explicit recipe which satisfies the desiderata, and apply this
recipe to examples. Finally, we discuss the higher dimensional case, and how the time
evolution relates to phase transformations associated with energy eigenstates.

2 Geometric Representation of Hamiltonian Dynamics

In quantum mechanics, the reversible time evolution of a state ρ of a system is deter-
mined by the Hamiltonian H according to the von Neumann equation

dρ

dt
= − i

�
[H , ρ] , (1)

which for a time-independent H , has the well-known solution

ρ(t) = exp

(
−i

Ht

�

)
ρ(0) exp

(
i

Ht

�

)
, (2)

for initial state ρ(0) evolving over time t .

2.1 Two-Level Quantum System

In the simplest case—a two-level quantum system (qubit)—we can interpret this evo-
lution geometrically using the Bloch sphere. A general normalized qubit state ρ can
be expressed in the form

ρ = 1

2
1 + 1

2

3∑
i=1

uiσi , (3)

where {ui } are real parameters satisfying
∑

i |ui |2 ≤ 1 (the uncertainty principle,2)
and σi are the Pauli matrices. The corresponding definition for a Hamiltonian is

H = 1

2
v01 + 1

2

3∑
i=1

viσi , (4)

1 By n-dimensional theories, we mean those where normalized states are determined by n real degrees of
freedom.
2 Specifically, from the Robertson–Schrödinger uncertain relation [45,46] as applied to the three Pauli
operators—see, for instance, Appendix A of [44]
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where {vi } are real numbers.
The Pauli matrices, which—along with the identity—form a basis for the 2 × 2

Hermitian matrices, satisfy

Tr
(
σiσ j

) = 2δi j , (5)[
σ j , σk

] = 2iε jklσl , (6)

where ε jkl is the (totally anti-symmetric) Levi-Civita symbol, which corresponds to
the structure constants of the SU(2) algebra [47].

As structure constants are important inwhat follows,we recall their definition: given
a set of basis vectors �ei for the underlying vector space of the algebra, the structure
constants (or coefficients) fi jk express the multiplication ◦ of pairs of vectors as a
linear combination:

�ei ◦ �e j =
∑

k

fi jk �ek . (7)

The above allows us to define real vectors �ρ (the Bloch vector) and �H that represent
the state and Hamiltonian respectively as Hi = Tr (Hσi ) and ρi = Tr (ρσi ) with
i ∈ {0, 1, 2, 3}. Here, ρ0 is the normalisation [33], and H0 is the average of energy
over all states, and neither plays any dynamical role. Combining the above equations
allow us to express the qubit evolution as

∂ �ρ
∂t

= −1

�
�ρ × �H , (8)

where × is the vector cross product (note: for i, j, k ∈ {1, 2, 3}, fi jk and the Levi-
Civita symbol εi jk , by which the cross product is usually denoted, are one and the
same). Thus, in the Bloch sphere representation we can describe the state evolution as
a rotation around the Hamiltonian axis (particularly, the axis between the eigenstates
of the Hamiltonian, often referred to as the energy eigenstates). This rotation has a
speed dependent on the magnitude of the Hamiltonian �H . This is depicted in Fig. 1.

Fig. 1 The Hamiltonian in
quantum theory (green arrow)
acts as the axis of rotation as
states (such as that represented
by the red dot) evolve in the
Bloch sphere (Color figure
online)
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2.2 General Finite-Dimensional Case

The state and Hamiltonian vector definitions generalise to a d-level system by way of
the generalised Bloch vector [47–50]. As well as normalization constraints, there are
other restrictions on which generalised Bloch vectors correspond to valid quantum
states (i.e. to prevent the corresponding density matrix having negative eigenval-
ues [51]). For a general quantum system we write:

ρ = 1

d
1 + 1

2

d2−1∑
j=1

u jλ j , (9)

H = v0

2
1 + 1

2

d2−1∑
k=1

vkλk, (10)

where {λi } are the generalised Gell-Mann matrices [50], which form a basis of
Hermitian operators much like the Pauli matrices. The generalised Gell-Mann matri-
ces also satisfy generalizations of (5) and (6), such that Tr

(
λiλ j

) = 2δi j and
[λ j , λk] = 2i f jkl λl where f jkl are the structure constants of the SU(d) algebra [47].
One can then identify (d2 − 1)–dimensional real-vectors �ρ and �H with elements
ρi = Tr (ρλi ) and Hi = Tr (Hλi ) for i ∈ {0, 1, 2, · · · , d2 − 1}, respectively describ-
ing the state and Hamiltonian of a d-dimensional quantum system.

The state evolution follows the von Neumann equation (Eq. (1)) written in matrix
form:

∂ρ

∂t
= − i

�

⎡
⎣v0

2
1 + 1

2

d2−1∑
k=1

vkλk,
1

d
1 + 1

2

d2−1∑
j=1

u jλ j

⎤
⎦ = 1

2�
fi jkuiv jλk, (11)

where we use implicit summation notation. From this we can extract the vector form
of this equation by taking the trace of Eq. (11) multiplied by λl to obtain

u̇l = 1

�
fi jluiv j . (12)

3 Beyond Quantum Theory: The Convex Framework

We shall employ aspects of the convex framework to go beyond quantum theory [5–8].
In this framework, a theory is defined by (i) a finite-dimensional, compact convex set
of normalized states, (ii) a convex set of effects (measurement-outcome pairs), and
(iii) a set of transformations. States may be represented by real vectors. Effects are
linear functionals that map states to probabilities associated with a particular outcome
given a measurement, and these can also be represented by real vectors. Particularly,
the state �ρ and the measurement-outcome effect �ei can be represented such that the
probability pi of a measurement yielding a given outcome i on a particular state is
calculated as the standard Euclidean inner product (·) between the two vectors:
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pi = �ei · �ρ. (13)

The set of normalized states generate a positive convex cone � of (in general)
unnormalized states. The apex of this cone represents an “absent” state on which
every effect returns 0 probability. If �ρ1 and �ρ2 are in the set of allowed states, then so
is the state ρ = p �ρ1+(1− p) �ρ2 for p ∈ [0, 1]. This convex combination is interpreted
as a probabilistic preparation of a state, just as in quantum theory. Likewise, the set
of effects also form a positive cone, but in general this is a different cone from that of
states (only coinciding in special cases; notably, quantum theory where every bra has
a unique associated ket).

There is a special unique effect known as the unit effect, �u, such that �u · �s = 1 for
every normalized state �s in the theory.3 The unit effect also allows the definition of
a measurement within a theory: a collection of effects { �fi }i=1...N such that summing∑N

i=1
�fi ·ω = u ·ω for all statesω ∈ �. This corresponds to the assigned probabilities

of all effects within this set summing to unity for any choice of normalized state.
(Assuming that all such measurements can actually be made on a system amounts to
a strong version of the no-restriction hypothesis [52,53]).

As the Hamiltonian is an observable rather than a measurement outcome, we shall
also use the notion of a vector representing an observable. Consider a measurement
X on a state ρ (with real vector representation �ρ), where each measurement outcome
xi occurs with probability pi (ρ) = �fi · �ρ. In general, we want the expectation value
of X with respect to any given state ρ to satisfy

〈X〉ρ =
∑

i

pi (ρ) xi . (14)

This motivates the definition of an observable �X as a linear combination of effects4

�X :=
∑

i

xi �fi , (15)

(independent of the state ρ) such that

〈X〉ρ = �X · �ρ (16)

for every ρ.
The evolution of the state vector is a linear map (i.e. can be represented as a matrix)

that takes states to states, following from the postulate that the map should not depend
on the probabilities of the states involved [5,6]. Thus, if the state of a system evolves
in time t , it can be written as

�ρ(t) = M(t) �ρ(0), (17)

3 Geometrically, the set of normalized states correspond to a hyperplane intersection with the cone of all
states.
4 This definition follows similar definitions in [15,54]. In general, an observable canbe treated as a functional
that maps states onto a number, for example representing an expectation value of a measurement, as per
[13].
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where M(t) is some real matrix and �ρ(0) is the initial state.
Transformations can be composed such that application of M1 followed by M2

corresponds to the matrix product M = M2M1, and there exists the possibility of
doing nothing to the state at all (corresponding to identity matrix 1). As such, the set of
all transformations in a theory forms a monoid. Particularly, the set of transformations
that can be reversed (that is where for every M in the set, there exists an M ′ in the set
such that M ′M = 1), forms a group T which will be a subgroup of the automorphism
group of the theory’s state space (or the automorphism group itself).

Broadly, one can consider the reversible dynamics of a theory as a single parameter
subgroup of T , where the single parameter t corresponds to the passage of time. In this
article, we shall restrict our discussion to time-independent dynamics (such as those
induced by the time-independent Schrödinger equation in quantum theory). Here, one
may consider continuous dynamics as a homomorphism5 from the real numbers under
addition (viz. the passage of time) to an element of the transformation group: R → T .
Discrete dynamics (discussed further in Sect. 5) correspond to quantized time, and so
act on a more restricted domain to map Z → T . The specification of these maps (if
they exist) is a property of the particular theory.

Classical probability theory fits into the above formalism, wherein the states are
probability vectors, the effects are the natural basis of those vectors, and normalization-
preserving transformations are stochastic matrices. Quantum theory also fits into this
formalism, much as described in Sect. 2: states can be expressed as a Bloch vector,
observables as another vector (e.g. like �H ), and the transformations as linear maps
taking valid states to valid states.

4 Desiderata for Hamiltonians Beyond Quantum Theory

To what extent can one define a Hamiltonian in probabilistic theories other than
quantum theory? We shall make reference to the following possible desiderata of
the definition of the Hamiltonian:

A. The Hamiltonian should be an observable [OBS].
B. The Hamiltonian should (at least partially) determine the generator of time evolu-

tion [GEN].
C. The expected value of the Hamiltonian should be invariant under time evolution

[INV].
D. TheHamiltonian should be consistent with the quantumdefinition [QUAN]: Given

quantum theory in the form of states and reversible transformations, the defini-
tion should give the same pairs of Hamiltonians and time evolutions as standard
quantum theory would.

In [13] (particularly, Definition 30), the existence of an energy observable assign-
ment is taken to mean that there is a mapping between energy observables (OBS)

5 Without time-independence, this map is not necessarily homomorphic. E.g. composition of evolutions
for 3 seconds and for 5 seconds is equivalent to evolving the system for 8 seconds only if “5 seconds of
evolution” corresponds to the same group element whether the evolution begins at time t = 0 or at time
t = 3 seconds.
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and generators (GEN) that is one-to-one, respects property INV, and assigns different
values to at least 2 different states whenever the time-evolution is non-trivial. Thus,
their definition of an energy observable assignment is consistent with our desiderata
for a Hamiltonian.

In particular, we shall discuss example theories (such as box world [6], and
Spekkens’ toy model [55]) that would have already been ruled out by the other axioms
assumed in [13] (indeed, as is a key point of [13]: from a restricted set of theories
that respect their earlier axioms, the only theory respecting their energy observable
assignment is quantum theory).

4.1 Implications ofOBS

In line with Eq. (15), the Hamiltonian can be represented as the observable

�H =
∑

i

Hi �hi , (18)

where �hi are effects forming a measurement such that
∑

i
�hi · �ρ = 1 for all normalised

states �ρ.
In general, this is not a unique decomposition: a given �H could have many different

sets of {ei } that satisfy Eq. (18). The standard way of decomposing an observable in
quantum theory—the spectral decomposition—is associated with orthogonal projec-
tors |i〉〈i |. An operational significance of orthogonal projectors is that they are states
that can be deterministically distinguished in a single measurement. For example, the
Pauli matrix Z is usually written as Z = |0〉〈0| − |1〉〈1| in terms of effects |0〉〈0| and
|1〉〈1| associated with eigenvalues +1 and −1 respectively.

However, in general theories the existence of a unique spectral decomposition
is not guaranteed. Rather this is a property that can be taken as an axiom towards
selecting quantum theory [15,27,56]. As such, an alternative statementOBS* that the
Hamiltonian can be represented as a spectral observable would be stronger thanOBS,
but would preclude the finding of Hamiltonians in many non-quantum theories.

4.2 Implications ofGEN

In quantum mechanics, state spaces have continuous symmetries, while many other
state spaces of interest in the GPT framework feature discrete symmetries [6,55].
When discussing the time evolution, this introduces a potential issue: the continuous
symmetries of the quantum state spaces are needed to allow unitary evolution over
an arbitrary time step. For instance, consider a cubic state space (3-in 2-out gbit [6])
evolving under quantum dynamics with Hamiltonian Z . States where 〈X〉2+〈Y 〉2 > 1
(strictly) are not mapped to gbit states for all times, but only for times that induce
rotations of nπ/2 where n ∈ Z. Since restriction to discrete rotations has somewhat
qualitatively different physical implications, we shall discuss the continuous case here,
and defer discussion of the discrete case until Sect. 5.

For a generic transformation to be a time evolution, the concept of time must be
involved: namely that the transformation takes the state of the system at one time to

123



Foundations of Physics

a state at another. Moreover, one might wish to admit the concept of performing the
“same type” of transformation, over different lengths of time. For this structure to
be present, we would then need to identify one-parameter subgroups of transforma-
tions, wherein this single parameter corresponds to time. GEN then states that it is
the Hamiltonian within a theory that should determine the particular one-parameter
subgroup by which a system evolves.

Normalized state-spaces are topologically bounded. The reversible linear transfor-
mations on themhence form a compact Lie group (or somefinite subgroup thereof) [7].
Thus there exists a unitary—and moreover, for real vector spaces, orthogonal—
representation of these transformations [57]. Orthogonal matrices have determinant
±1, and eigenvalues with absolute value 1. For theories with continuous time, wemust
restrict ourselves to elements of O(n) that are connected to the identity. This selects
the special orthogonal matrices SO(n), with determinant +1. We can see this by con-
sidering the orthogonal matrixO(τ ) that evolves the system over time τ , and requiring
from continuity, the existence of some evolution for half that time, O(τ/2), defined
such that when it is applied twice O(τ/2)O(τ/2) = O(τ ). If det[O(τ )] = −1, then
O(τ/2) cannot have determinant ±1, since det(P Q) = det(P) det(Q), and hence
cannot be a valid transformation.

When the transformation is given by a special orthogonal matrix, we may consider
the infinitesimal change in state �ρ between times t and t + dt :

�ρ (t + dt) = [1 + dt A(t)] �ρ (t) , (19)

where A is known as the generating matrix. For time-independent6 A, this relates to
the finite transformation M(t) by way of the exponential map

M(t) = exp (At) . (20)

As a generator of the special orthogonal group SO(d) (where d is the dimension
of the set of normalised states) A is anti-symmetric: Ai j = −A ji and hence has
d(d − 1)/2 degrees of freedom in general.

With this in mind, let us thus consider the implications of GEN. Namely, if the
Hamiltonian �H should (partially) determine the generator of time evolution, it would
be sufficient to describe this A as being dependent on �H . In keeping closer to quantum
mechanics one could place the stronger requirement that A be a linear function of

�H . The exact form of this dependency will be constrained by other desiderata—in
particular, INV.

Finally, let us consider whether or not the Hamiltonian must uniquely determine the
generator of time evolution. This would be a stronger requirement (say GEN*), and
would accordingly limit the number of theories that could admit Hamiltonians. Indeed,
just from naïve dimension counting, matching the d parameters in the observable with

6 For time-dependent A, one integrates Eq. (19) into a time-ordered exponential: M(τ ) =
T

{
exp

[∫ τ
0 A(t) dt

]}
, where T (·) denotes that every term in the expansion of the exponent only appears in

increasing time order. This explicit ordering is necessary since in general A(t) and A(t ′)might not commute
at different times.
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the d(d − 1)/2 degrees of freedom in the generator posits a challenge (the inability to
do so is used in [13] to rule out higher-dimensional alternatives to the Bloch sphere7).

In the case of finite-dimensional quantummechanics this constraint comes through
the dynamics being governed by the SU(d) group as in Eq. (11). In general theories,
there is no guarantee of a one-to-one relation linking time evolution with the energy
observable. Indeed, it could be that the Hamiltonian can only identify the dynamics up
to a subgroup with more than a single parameter of freedom (i.e. more than just time).
Here, perhaps another observable would make up the deficit, and completely deter-
mine the system’s dynamics; or perhaps otherwise wemay have a priori restrictions on
the theory’s dynamics such that given specification of such a sub-group by the Hamil-
tonian, a particular one-parameter subgroup is systematically chosen. One might find
it physically motivated to avoid such situations and hence require GEN*. This would
limit one’s ability to find Hamiltonians, except in theories similar to quantum theory.

4.3 Implications of INV

If we impose INV, such that the energy expectation value is conserved, we require:

�H · �ρ(t) = �H · eAt ′ �ρ(t), ∀t ′, ρ. (21)

We can perform a Taylor expansion for eAt ′ , which leads us to the equality

Hi Ai j

(
t ′1 jk + 1

2
t ′2A jk + 1

6
t ′3A jl Alk · · ·

)
ρk = 0, ∀t ′, ρ. (22)

In order to satisfy this for an arbitrary state at any time t ′, we seek a solution to
Hi Ai j = 0, which places d constraints upon A. If A is non-zero (i.e. for non-trivial
dynamics), then to solve this for arbitrary states A must have some dependence on

�H . If this dependence is linear then we can write Ai j = gi jk Hk , where for non-trivial
dynamics Hk �= 0 for at least one k. (The case of Hk = 0 ∀ k trivially satisfies
INV). Then, anti-symmetry gi jk = −gkji is sufficient to satisfy Hi Ai j = 0 since
Hi gi jk Hk = Hk gkji Hi .

In principle gi jk Hi Hk = 0 could be obtained through other solutions, but we seek
a general mechanism that satisfies this for independent choice of �H . The tensor gi jk

can be decomposed into a part symmetric under i ↔ k, and a part anti-symmetric
under the same as gi jk = gS

i jk + gA
i jk . Suppose gi jk Hi Hk = 0 for some �H . For

the Hamiltonian �H
′
where H ′

m = Hm + cm , we would require gi jk H ′
i H ′

k = 0 also.
Subtracting gi jk Hi Hk = 0 from this,we require gmjmc2m+gi jmcm Hi +gmjkcm Hk = 0.
Any gA

i jk satisfies this, while the symmetric part requires gS
mjmc2m + 2gS

i jmcm Hi = 0,

which cannot be satisfied without introducing a dependence of gi jk on �H . Thus, for
gi jk to generally satisfy INV it must necessarily be anti-symmetric under i ↔ k.

7 [13] use an inverse statement of GEN, and consider the “observability of energy” as a postulate for
quantum theory. Namely, they specify that the generator of dynamics should be able to uniquely determine
an observable. On top of a set of axioms that restricts theories to Jordan algebras, this uniquely singles out
quantum theory.
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The addition of the previous restriction Ai j = −A ji then renders gi jk a totally anti-
symmetric tensor. This result leads to the same expression as earlier:

ρ̇i = gi jkρ j Hk . (23)

Looser constraints may be possible by significantly constraining the allowed Hamil-
tonians and states.

In general A need not even be linear in �H ; a more general form Ai j = gi jkm(Hk)
m

could be constructed. However, in this more general picture the same argument impos-
ing gi jkm = −gkjim would be insufficient to conserve the expectation of �H .

Note that conserving an operator’s quantity is not in general sufficient to single

out H . Even in the quantum case the Heisenberg equation i� d Ô
dt = −[Ĥ , Ô] implies

that any observable Ô that commutes with Hamiltonian Ĥ is conserved. (Ĥ itself is
trivially conserved by this equation). This leads naturally to the definition of “good
quantum numbers” such as angular momentum in atoms or the spin of particles.

4.4 Implications of QUAN

QUAN means that in the case of quantum states and quantum generators, a generic
recipe for producing Hamiltonians should give the same equation for the Hamilto-
nian as quantum theory would give. In particular Eq. (8) and the higher dimensional
equivalent Eq. (11) should follow from the definition in this case.

5 Discrete Evolution

In order to widen the reach of theories that might meaningfully have a Hamiltonian,
we now now consider the possibility of defining Hamiltonians for systems where the
evolution is governed by discrete dynamics.

First, we remark that desideratum OBS is unaffected by the dynamics.
Next, we consider to what extent does desideratum GEN makes sense in the dis-

crete context. Discrete transformations (particularly rotations and reflections) are finite
subgroups of the (infinite) Lie groups that govern continuous transformation. For a
continuous transformation, infinitesimal generators can be integrated to an arbitrary
time to produce the group element that corresponds to the desired action on the state
space. For discrete rotations the same infinitesimal generators may also be used, but to
ensure that a valid group element produced one must integrate only to allowed times
from a discrete set. Symmetry dictates that these times will have the form nτ where
n ∈ Z and τ is a fixed time determined by the form of the Hamiltonian. (Setting the
value of τ will be discussed further in Sect. 7.2.)

Additionally, if we permit non-continuous evolution—and especially do not require
that every evolution can be divided into an evolution over a shorter time period—then
the theory could theoretically admit orthogonal transformationsOwhere det[O] = −1
(i.e. incorporating a reflection). This type of dynamic is trickier to associate with
a Hamiltonian, since it does not directly correspond to a generator. Nonetheless, a
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recipe that allows us to do this is not mathematically inconceivable, although it is
not so physical. For instance, once could assign some (connected) generator of SO(n)

from the Hamiltonian, and then generate the finite-evolution M by supplementing the
exponential of the connected generator with a sign-flip on one element of the state
vector.

To summarize: if we wish to have dynamics around a non-continuous symmetry
in a state space, then we can restrict t in Eq. (20) to a set of regular discrete values
where M(t) is an allowed8 transformation. This would change the nature of time in
such theories to be a discrete quantity.

The implications of INV are not affected by restricting dynamics to a discrete set of
transformations. Any discrete rotation can be produced from the same set of generators
as a continuous rotation—and one might still consider the same set of constraints
on the generators and their relationship with energy observables. If reflections are
incorporated in a theory’s dynamics, the set of reflections which obey INV can be
reduced to those which map �H to �H from an equivalence �H · (M �ρ) = ( �H M−1) · �ρ.

Finally, desideratum QUAN is not contradictory with having a formulation that
allows for discrete time dynamics when presented with state spaces that have dis-
crete symmetries. The symmetry of quantum state spaces means that following a
fixed prescription on a quantum state space should in general lead to continuous time
behaviour; but that same prescription might yield discrete behaviour when presented
with (non-quantum!) state-spaces. Nonetheless, there are contexts where even within
the laws of quantummechanics such discrete time behaviour might be engineered. For
instance, consider standard quantum dynamics, but explicitly only allowing the state
to be written down at regular intervals chosen such that the number of pure quantum
states (given a particular initial state) is a finite set. In such a context, the Hamiltonian
would still have all its usual quantum meanings.

6 Defining Hamiltonians for 3-Dimensional State-Spaces

6.1 Recipe for Determining Hamiltonian

We now explicitly consider the case where the normalised states can be expressed by
3-dimensional real vectors (and time-evolution preserves the normalization of these
states)—such as the qubit Bloch sphere, or various popular alternative toy theories.
In this case there is a natural and powerful recipe for deriving a Hamiltonian from
observations.

We shall make reference to a standard set of infinitesimal generators. The infinites-
imal generator G of the orthogonal group must satisfy the anti-symmetric constraint
Gi j = −G ji . It can be expressed as some linear combination of

Lx =
⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦ , Ly =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , Lz =

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ . (24)

8 Allowed means that the transformation maps all states to states and satisfies any other constraints that are
part of the theory.
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In other words, any infinitesimal generator G of SO(3) can be written as a linear
combination αx Lx + αy L y + αz Lz , for αx , αy, αz ∈ R. This follows from the fact
that the set of infinitesimal generators for the orthogonal group is precisely that set of
matrices satisfying Gi j = −G ji and the above matrices are a basis for that set.

The Recipe The Hamiltonian for a given transformation is simply that vector of
coefficients, i.e. H1 = αx , H2 = αy and H3 = αz . That is,

G = H1Lx + H2L y + H3Lz, (25)

where G is the generator, the Hi are the components of the Hamiltonian and the L’s
are the matrices above. This defines �H for a given G.

This was designed to satisfy the desiderata. In particular the choice of Lx, Ly and
Lz as the basis guarantees that INV is satisfied as shown below. The following table
shows this is indeed the case.

Desid. OK? Why

OBS � �H is a real vector of the correct dimension
GEN � G = H1Lx + H2L y + H3Lz where G belongs to the Lie algebra of SO(3)
INV � See below
QUAN � As we are using the structure constants of the orthogonal group for the

generators in question (corresponding here to those of SU(2)), substituting
Eq. (25) for gi jk Hk in Eq. (23) implies the quantum dynamics of Eq. (8)

To demonstrate that INV is satisfied: From Eq. (23), gi jk for three-dimensional
systems is determined by a single non-zero value g123 and the associated anti-
symmetrisations, which can be absorbed into a rescaling of �H and allows us to
specifically consider the structure constants of SO(3) associated with the choice of
basis {Lx , L y, Lz}, which is given by the Levi-Civita symbol. The equations of motion
for a general state ρ = (ρ1, ρ2, ρ3)

T are then

ρ̇1 = ρ2H3 − ρ3H2 (26)

ρ̇2 = −ρ1H3 + ρ3H1 (27)

ρ̇3 = −ρ2H1 + ρ1H2, (28)

and it follows that d
dt

( �H · ρ
)

= �H · ρ̇ = 0. in general the exact resolution of �H may

not be possible from a single initial state.
If unnormalized states are considered, wemust explicitly include the ρ0 component

of the state and the associated H0 in the Hamiltonian. The effect on �H · �ρ for any
normalised state is to add a constant H0 to the energy, which can be associated with
the “zero” of energy relative to some absolute scale. (In quantum mechanics this is
seen in the Hamiltonians H + κ1 (κ ∈ R) which give the same dynamics for all
κ). This H0 has no direct dynamical consequence in theories where time-evolution
preserves states’ normalization. If the dynamics were affected by H0, then ρ0 would
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(a) (b) (c)

(d) (e) (f)

Fig. 2 State spaces andHamiltonians in example 3-dimensional theories.We express �ρ = (〈X〉, 〈Y 〉, 〈Z〉)T.
In all cases, the Hamiltonian acts as the axis of rotation. a Cylindrical state space. Arbitrary rotations around
Z axis permissible (shown); or twofold rotations about any axis in XY plane. b Conic state space. Arbitrary
rotations around Z axis permissible. c Stabilizer states, Hamiltonian associated with dynamics around Z
axis. d Stabilizer states, Hamiltonian associated with dynamics with threefold symmetry. e Gbit with 3
binary measurements. f Spekkens’ toy model. The state space is octahedral, but the transformations must
obey tetrahedral symmetries

also have to change through the anti-symmetry of gi jk demanded by INV. Hence H0
may be chosen arbitrarily in this recipe.

6.2 Examples

Example 1: Qubit—The evolution of states in the Bloch sphere, and how this relates
to the Hamiltonian, is the same whether using this recipe or Eq. (8) as in Sect. 2.
Indeed, this is true by definition of QUAN. This is drawn in Fig. 1.

Example 2: Cylindrical states space—Consider a cylindrical state-space where
the allowed states of X and Y measurements are subject to an uncertainty relation
〈X〉2 + 〈Y 〉2 ≤ 1, but the Z measurement is unconstrained (drawn in Fig. 2a). In
the corresponding theory, the Hamiltonian supplied by our recipe could correspond to
arbitrary rotations about the Z axis. On the other hand, one could also define a Hamil-
tonian in the XY plane. In this case, however, infinitesimal rotations are not valid
transformations: only twofold rotations (i.e. flipping the cylinder over) are allowed.
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Example 3: Conic states space—Consider a theory where states are restricted 〈X〉2+
〈Y 〉2 ≤ 1

2 (1 + 〈Z〉). Such a constraint leads to an unusual conical state space (drawn
in Fig. 2b), where there is only one state where 〈Z〉 = −1, but a family of states (with
values 〈X〉2 + 〈Y 〉2 ≤ 1 when 〈Z〉 = 1. Like with the cylinder, a Hamiltonian in the
Z direction will accommodate arbitrary rotations. However, since the symmetry in Z
is broken, the other discrete rotations are no longer allowed, and so this is the only
Hamiltonian in the theory that can lead to dynamics.

Example 4: Stabilizers—The convex hull of the stabilizer states (eigenvectors of
Pauli matrices) form an octahedron sitting inside the Bloch sphere (touching where
the axes cross through the sphere) [58]. This can also be rotated, but only along
certain directions and at certain angles. Each such evolution can be associated with a
Hamiltonian with the above recipe. (E.g., see the fourfold rotation in Fig. 2c, or the
threefold rotation in Fig. 2d).

Example 5:Box-world—As our first non-quantum example, let us consider the theory
in which there are are three complementary binary measurements (without effects for
joint measurements) but no uncertainty relation: that is, the 3-in-2-out gbit [6] of
box-world. This theory corresponds to a cubic state space.

Here, once again, the Hamiltonian is the axis of rotation. However, unlike quantum
theory, only certain axes and certain angles are allowed, as dictated by the cubic
symmetries, that is, the fourfold symmetries around the three “natural” observables
(e.g. as drawn in Fig. 2e), but also the four threefold symmetries through opposite
vertices of the cube. This would suggest that a universe whose state spaces are given
by gbits can only admit discrete time evolution.

Example 6: Spekkens’ toy model—Spekkens’ toy model [55] is a popular toy theory
that exhibits many features of quantum theory. Here, one takes a classical variable
specified by n bits of information, and places the epistemic restriction that one can only
know n/2 bits at any time. The simplest single system in this framework corresponds
to a 2-bit system, where one knows the value of either of the bits, or alternatively the
correlation between them. This also corresponds to a system with three measurements
each with two outcomes.

Although a priori, Spekkens’ toy model is not a GPT, it can be closed into a
convex state space and represented as a theorywithin the convex framework [32,53,59].
The state space then is an octahedron, much like the stabilizers [60]. However, the
allowed transformations are different, as they must correspond to valid operations on
the underlying 2 bits—that is, a four-level classical system, with tetrahedral symmetry.
(For instance, it is impossible to flip the value of just one bit without also flipping the
correlation; and this constrains the symmetries we might see).

Thus, when we apply our Hamiltonian recipe to this system, we find once more that
we are limited to discrete times (Fig. 2f). The threefold symmetries of the stabilizers
are still present; but the rotations about the principle axes are limited to 0 or π .
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6.3 Higher Dimensional Case

We now consider how to define Hamiltonians in higher dimensions. Naturally this
becomes more difficult to visualise, yet may allow for an even richer set of non-
quantum theories. Indeed, for systems with a three-dimensional state space, the
anti-symmetry of gi jk in Eq. (23) permits only permutations of a single triple to
be non-zero (and it must be non-zero to avoid trivial dynamics), forcing a greater
equivalence between quantum and non-quantum theories than may be present in the
higher dimensional case.

The generators L X , LY and L Z naturally generalise to higher dimensions by noting
that they are the basis for skew-symmetric matrices. However, if one uses the structure
constants for the orthogonal group naively as a method for determining �H in the same
way as we did for the 3D case, there is the problem of dimensional mismatch. There
is on the order of d2 such generators whereas the vector for an observable should
be d-dimensional. In the quantum case this is not a problem because one uses a
restricted generator set—not the full orthogonal group set—with the associated SU(n)

structure constants. In order to have awell-definedHamiltonian as both observable and
generator in general, one possible route is accordingly to accept a reduced generator
set. Otherwise one might consider multiple Hamiltonians for a given generator.

6.4 Classical Mechanics

While it is beyond the scope of this paper to undertake an in-depth analysis of the
classical mechanical Hamiltonian from a GPT perspective, we note that the classical
mechanical time evolution fits into the paradigmused here. To see classicalmechanical
evolution as an orthogonal transformation on a real vector use the Liouville equation:

− d

dt
ρ = {ρ, H} := L(ρ), (29)

where

L(·) =
∑

i

∂ H

∂ pi

∂(·)
∂qi

− ∂ H

∂qi

∂(·)
∂ pi

(30)

is the Liouville operator. The real vector here is the phase space density ρ(x1, p1, x2,
p2, ...). The phase space density can by assumption be expanded in some basis of
orthogonal functions {φi (x, p)}i (e.g. Fourier series plane waves or delta functions).
One can prove through standard arguments that the operatorL(·) is antisymmetricwith
respect to swapping basis element vectors, assuming that the phase space of interest
is bounded so that the basis functions vanish at the boundaries, and that H is of the
form p2

2m + V (x) (see e.g. [61]):

Lkl = −Llk, (31)

where Lkl = ∫
dx dp φk(x, p)L(φl(x, p)). Thus the time evolution, for a constant

generator is
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ρ(t) = eLtρ(0) (32)

and eLt is an orthogonal matrix (as the matrix exponential of an antisymmetric matrix
is an orthogonal matrix). We also note that the quasi-probability Wigner function can
act as the real vector in question, fitting into the GPT framework used here [37].

7 Energy Eigenstates and Phase Transformations

One important feature of Hamiltonians in quantum theory is that the eigenstates of a
system’s Hamiltonian (referred to as energy eigenstates) provide a special basis for
writing down the dynamics of the system in a particularly simple manner. Namely, in
the standard picture of quantum theory, time evolution induces variations of phases
in front of energy eigenstates. This is, for some pure quantum state |ψ〉 = ∑

i αi |ei 〉
(where |ei 〉 are the energy eigenstates and αi are complex coefficients such that∑

i |αi |2 = 1), Hamiltonian evolution for time t changes the state to

|ψ ′〉 =
∑

i

exp

(
− i Ei t

�

)
|ei 〉 , (33)

where each Ei is the eigenvalue associated with eigenstate |ei 〉.
Beyond defining the Hamiltonian in GPTs, it is interesting to consider the extent to

which the evolution determined by our GPT Hamiltonians resembles that of a phase
transformation (in themanner of [32]), as this has the potential to informunderstanding
of decoherence and thermalisation-type effects. To generalise this beyond quantum
theory, we will need a general definition of phase.

7.1 Phase in the Convex Framework

Consider a pure quantum state |ψ〉 = ∑
i ci eiφi |i〉 expressed in the basis of {|xi 〉}.

Here, the measurement statistics associated with {|xi 〉} are given by the probabili-
ties pi = | 〈xi |ψ〉 |2 = |ci |2, and one can see that the values {φi } can be freely
changed without changing these statistics. As such, {φi } are here referred to as phases
associated with the measurement. One can then take an active picture of phase,
whereby one considers the set of transformations on a state that preserve the statis-
tics of a given measurement. For reversible quantum operations, this is the subgroup
G� := U (1) ⊕ . . . U (1) ⊂ U (n). By assigning a “reference state” for a given set of
statistics, (e.g. a natural choice is |ψ0〉 = ∑

i ci |xi 〉), one can see there is a one-to-one
relationship between elements of this subgroup and choices of phases {φi }i , namely
|ψ〉 = g |ψ0〉 for g ∈ G�.

This particular group-theoretic notion of phasewas generalised to the convex frame-
work in [32], where without the comfortable underlying structure of Hilbert spaces,
the phase has been defined solely in terms of transformations. A transformation T is
said to be a phase transformation with respect to a measurement B made up of effects
{ �eb}, if �eb · �ρ = �eb · T �ρ for every b, and every state ρ in the theory. That is, a phase
transformation with respect to a measurement always preserves the statistics of that
measurement. If one considers this constraint on the group of reversible transforma-
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Fig. 3 Well-defined energy does
not imply stationarity under
time-evolution. The entire top
plane (shaded red) of the cube is
a state with a definite energy.
Nonetheless, not every state on
this plane is invariant under time
evolution, as shown by the red
example state ρ (Color figure
online)

H

ρ

<X>
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tions, we find that it induces a particular sub-group deemed the phase group associated
with measurement B.

7.2 States withWell-Defined Energy

The notion of time evolution putting a phase in front of energy eigenstates is more
subtle in general theories than it is in quantum theory. Consider an operational defini-
tion of a state having well-defined energy let there be some energy measurement with
effects { �hi }. A state �ρ has well-defined energy (namely is said to be in energy level i)
if �hi · �ρ = 1 (and by implication �h j · �ρ = 0 for all other j �= i).

However, unlike in quantum theory, the states with well-defined energy are not
necessarily stationary under time evolution. Consider a cubic state space such as that
of the gbit with Hamiltonian and evolution as in Fig. 3. The top and bottom planes
of the cube have well-defined energy (and this is not changed by the evolution) but
the states themselves are not stationary under time evolution. Instead, we can talk of
convex sets of stateswithin planeswhich are stationarywith respect to theHamiltonian
observable under time evolution, such as the lower and upper plane of the cube.

On the other hand, there are some special cases of theories where being in a definite
energy state does guarantee stationarity under time evolution due to the uniqueness of
the state. This corresponds to theories where the energy observable is a spectral mea-
surement [27]. Noteable examples of this include complex and quaternionic quantum
theory [62]. As such, a postulate that states of definite energy do not change under time
evolution could be taken as an axiom towards selecting quantum theory, or indeed as
an alternative physical motivation that implies existing axioms such as postulates 1
and 2 of [13].

7.3 Hamiltonian Dynamics as Phase Transformations

Is the time evolution a phase transformation with respect to the Hamiltonian mea-
surement? In quantum theory, Eq. (33) shows clearly that it is. In general, however, a
cursory glance tells us that INV places a single constraint on transformations, whereas
restricting oneselves to the set of phase-transformations of an n-outcomemeasurement
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effectively places n constraints As such, we may wish to state a stronger desideratum
INV* that mandates that all energy-related statistics of the decomposition of �H should
be invariant under Hamiltonian dynamics. Under INV*, it follows that Hamiltonian
dynamics are phase transformations of an energy measurement.

While it is clear that INV �= INV* in general.9 there are some conditions where
INV does imply INV*. Firstly, although restricting a transformation to be in a phase-
group seemingly places n constraints, if the transformations are also restricted to
those that map normalized states to normalized states, we see that only n − 1 of the
phase group constraints are independent (because the probabilities of outcomes of
each measurement must add to 1). As such, for systems with two different energy
levels, we straight away see that INV imposes that time-evolution is in the phase
group of the Hamiltonian measurement. This holds true for any theory where the
energy measurement distinguishes at most between two outcomes, including any to
which the recipe in Sect. 6.1 applies, d-dimensional balls (2-level Jordan algebras)
and d-in 2-out gbits.

This distinction between operations that conserving the expectation value of energy,
and those that are diagonal with respect to the Hamiltonian (i.e. are phase operations
of the enegy measurement) has also appeared in the very different context of quantum
thermodynamics [63]—where one often wishes to identify a set of energy-conserving
“thermal operations” (see e.g. [63]). The set of allowed thermal operations is different if
average energy is preserved [64] (analagous to INV), vs. themore restrictive conditions
that the thermal operation commute with the Hamiltonian [65] (analagous to INV*).

7.4 Determining the Energy of a System

For a theory with a given energy measurement { �ei }, and a Hamiltonian �H = ∑
i Ei �ei ,

the real numbers {Ei }may be thought of as “energy eigenvalues”: namely, they assign
a definite energy value Ei to any state ρi with well-defined energy in level i .

In quantum theory, the choice of such numbers is not meaningless. Consider
a two-level system |ψ(0)〉 = α1 |e1〉 + α2 |e2〉, evolving under the Hamiltonian
H = E1 |e1〉〈e1| + E2 |e2〉〈e2|. After time t the system is in state |ψ(t)〉 =
α1 exp

(
− i E1t

�

)
|e1〉 + α2 exp

(
− i E2t

�

)
|e2〉. Taking into account global phases, we

see that there is some τ such that |ψ(τ)〉 = |ψ(0)〉, namely when τ = h/(E2 − E1).
As such, the difference in energy values assigned to each eigenstate determines the
speed of the evolution.

Consider theories with Hamiltonians given by the recipe in Sect. 6.1: namely those
where the maximal measurement [54] distinguishes between two mutually exclusive
possibilities and states can be described by 3-dimensional real vectors (i.e. the qubit
and its foils, as per our earlier examples). In this case, the Hamiltonian observable
should have the form

�H = E1 �e1 + E2 �e2. (34)

9 As a pathological example, consider a three level systemwhere E1 = 0, and E3 = 2E2; a transformation
from a state �ρ with well-defined energy in E2 ( �e2 · �ρ = 1) to ρ′ where �e1 · �ρ′ = �e3 · �ρ′ = 0.5 would satisfy
INV but not INV*.
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T1
branch 1

branch 2

branch 3
ϕ3 - ϕ2

Fig. 4 Branch locality in 3-level quantum theory. Suppose there was an interferometry experiment with
three spatially disjoint branches. Any action taken on the top branch T1 will not affect the relative phase
(or indeed any other statistic) φ3 − φ2 between states on the bottom two branches (proof in Appendix B of
[44])

In such theories, since the dynamics are guaranteed to be a simple rotation, we can
determine the period of motion and operationally find E2 − E1 = 1

τ
, where τ is set

by the experiment (note, we have set our units of energy such that h = 1).
If we then further impose that the physics should not care about a general shift in

energy (that is, the dynamics should be a function only of relative energies), then this
allows us to set E1 = 0 and write

�H = 2π

τ
�e2. (35)

The energy observable associated with any given dynamic can thus be determined for
this class of theory.

What about cases where the energy measurement has three or more outcomes?
Here, an additional conceptual difficulty arises: namely, which aspects of the dynam-
ics should be assigned to which energy levels. [In general, theories do not have an
underlying Hilbert space structure which leads to the obvious form of Eq. (33).]

A principle for associating a given phase transformation with a given state or set of
states was proposed in [33] in the setting of generalized interferometry experiments.
Here, the key degree of freedom (conventionally labelled Z ) describes a choice from
a set of disjoint paths, or branches (e.g. the “which path” measurement on the two
arms of a Mach–Zehnder interferometer).

In such theories, each branch i is associated with an effect �ei (such that the total set
of effects over all branches forms a measurement), and a state �ρ is said to be localized
to a branch i if �ei · �ρ = 1 for that branch, and �e j · �ρ = 0 for all j �= i . One can
then talk about the localization of transformations to branches using the principle of
branch locality [33]: if a state has no support on branch i , then any transformation
that effects a change in a state �ρ¬i where �ei · �ρ¬i = 0 cannot be said to be localized
to branch i . This statement allows one to induce a hierarchical structure of subgroups
of transformations that can and cannot be performed locally to (sets of) branches.
For example (Fig. 4), in a three-branch quantum system, branch locality would forbid
operations taken on branch 1 to induce a phase between branches 2 and 3 [44].

Although this principle of branch localitywasfirstmotivatedwith respect to position
measurement, it is natural to consider the implications if the branch localization of
transforms is also applicable to energy measurements.

The principle of branch locality can be quite restrictive as to what transformations
may be localized. As an example, take the cubic gbit state-space (Fig. 3). Here, the
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upper and lower planes represent the branches associated with definite outcomes of
the Z measurement. For a given phase transformation to be localised to one of these
planes it must leave the other invariant, and in the case of the gbit no such non-trivial
transformation exists [33]. Thus we see that the time evolution in the cube exam-
ple (rotation around the central axis) is not a composition of phase transformations
localised to either energy branch, as that would be the identity operation. Indeed, the
unique assignment Eq. (35) only worked because it is concerned with relative phases,
and, in the two-level case, a single relative phase encapsulates all phase dynamics. For
higher dimensional systems in box-world, we run into problems, since there would
now be phase dynamics between 3 different pairings of branches (and possibly also
tripartite phase dynamics), but branch locality tells us that all box-world dynamics
must be global10 (strictly: a system with d branches cannot be localised even to a
subset of d − 1 branches) [33,54].

On the other hand, in the quantum case any phase transformation can be imple-
mented as a local phase transformation [33], namely because there is only a single
definite state with respect to each outcome of the phase measurement, and thus con-
straints on the state-space will prevent local operations from violating branch locality.
Likewise, quaternionic quantum theory also allows for this kind of branch localisa-
tion [44].

With this in mind, we see that the dynamics such as that of the cylinder of Fig. 2a
or the cube in Fig. 2e, cannot be explained in a manner similar to Eq. (33), whereby
the (generalized) evolution is driven by the independent application of phases between
different energy “eigenstates”. Indeed, Hamiltonian dynamics consistent with princi-
ples of branch locality may be a signifier of quantum theory (or something structurally
similar to it), as we would expect from the results in [13].

Let us return to the question of determining energy values from a system’s dynamics
(if this is even possible). Suppose wewish to determine relative energies between pairs
of energy levels. For theories where transformations can be branch localised to pairs
of energy levels, we could consider the action of time evolution on the set of states
supported on specific pairs of energy levels (say i and j), and hope that every state in
this set is mapped to itself after the same length of time τi j > 0. If this is the case,
then one can determine the relative energy �i j := 1/τ . From these �i j one can infer
a set of simultaneous equations �i j = E j − Ei to solve for the energies {Ei } up to
some constant offset. The precise set of theories where these equations are consistent
is beyond the scope of this current discussion, but we suspect that if this does not
outright select quantum theory, it will take us fairly close to it.

10 This does not mean that there are no phase dynamics—take for instance the Aharonov-Bohm effect in
quantum theory, whereby some global operation induces phases between branches. However, in quantum
theory, a transformation with statistically identical action on the states can also be induced by putting pieces
of glass on each individual branch; in box-world, a global transformation akin to the Aharonov–Bohm effect
is permissible, whereas the analogous local construction that induces the same phase transformation is not
possible.
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7.5 Time and Discrete Evolution

Finally, let us make a few remarks on the nature of time in theories with discrete evolu-
tion (for example, quantum stabilizers [58], the gbit [6], or Spekkens’ toy model [55],
as discussed above). If we impose that we only measure time at discrete intervals
(say, τ ), in order for the generated dynamics to correspond to allowed rotations of the
state-space, one has to restrict the allowed relative energies to a discrete set such that
rotation for time τ is always allowed.

Moreover, in such a theory not only are the allowed energies discrete, but the
set of operationally distinct energies may be limited in number. Consider the fourfold
rotation of the gbit around a principle axis. Unlike continuous time theories, where one
can always consider evolution over a shorter time, in the discrete case rotation by π/2
and by 5π/2 are operationally indistinguishable. Thus, if we look to the dynamics
of this system to determine the energy eigenvalues, there would only be 4 distinct
energies. This relates to the phenomenon known as ‘aliasing’. Suppose we could only
measure a rotating system at regular time intervals: there is in fact a discrete infinite
family of frequencies that we might assign consistently with our readings. In the case
where time itself is discretized—rather than just taking a discrete subset of samples of
a continuous reality—then these aliases become in fact an unphysical gauge freedom,
since there would be no way to distinguish between them (e.g. by taking samples at a
faster interval).

We thus draw the following conclusions for Sect. 7: (i) time evolution is a phase
transformation with respect to energy more generally too, (ii) in general, states with
well-defined energy are not fixed under time evolution, unlike in quantum theory, and
(iii) the time evolution is not localisable to energy eigenstates in general. Points (ii)
and (iii) may be important characteristics of quantum theory.

8 Summary and Outlook

We have seen how a definition of energy very similar to quantum theory can be
extended in a concrete manner to a much more general set of theories. In particular,
we focussed on 3-dimensional state spaces and found a definition of a Hamiltonian
which satisfied four desiderata: (i)OBS that theHamiltonian is an observable, (ii)GEN
that it determines the generator of the time evolution, (iii) INV That its expectation
value is invariant under the time evolution, and (iv)QUAN that the definition should be
consistent with the quantum definition. We investigated such Hamiltonians for certain
example theories. We moreover found that time evolution can also be seen as a phase
transformation, but in general not without sacrificing the association of eigenstates as
stationary states.

We anticipate that progress in defining and understanding Hamiltonians in this
general framework will lead to progress in understanding energy related phenomena,
including: (i) thermodynamics, (ii) the difference between quantum and classical time
evolution, and (iii) tunnelling in post-quantum theories.
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