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1. Introduction

Let p be a prime number and A ⊆ SL2(Fp) be a set of matrices. Suppose for sim-
plicity that A = A−1, that is, A is a symmetric set. One can consider the Cayley graph 
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Cay(SL2(Fp), A) (here Cay(SL2(Fp), A) = (SL2(Fp), E) and the set of edges E is defined 
as (x, y) ∈ E iff y = xa, a ∈ A) of the set A and study the properties of Cay(SL2(Fp), A). 
It is a fundamental problem to show that A is an expander [15], [12] under some con-
ditions on A. Equivalently, we want to estimate nontrivially the operator norm of all 
representations of the Fourier transform of the characteristic function of A, i.e., Â(ρ), 
ρ #= 1. In [2] (also, see [3]) Bourgain and Gamburd obtained

Theorem 1. Let A ⊆ SL2(Fp) be a generating set, A = A−1, τ ∈ (0, 1) be a real number 
and

girth(Cay(SL2(Fp), A) ! τ log|A| p .

Then Cay(SL2(Fp), A) is an expander.

Recall that the girth of a finite graph is the length of its minimal cycle. The proof 
of the result above involves some calculations with free groups [2]. Moreover, usually 
in applications, Theorem 1 is used for a set of generators A ⊆ SL2(Fp) such that A
generates a free subgroup of SL2(Z), e.g.,

A =
〈(

1 s

0 1

)
,

(
1 0
t 1

)〉
, |st| ! 4 (1)

or for a randomly chosen A (it is known that for such A the Cayley graph Cay(SL2(Fp), A)
has large girth), see [2]. To demonstrate transparently the strength of the result above 
we formulate a consequence of Theorem 1, which was obtained in [17] (actually, in the 
only case g(x) = −1/x, see the complete proof in Theorem 8 below) and which was 
found further applications to the Zaremba conjecture in [18]. Recall that SL2(Fp) acts 

on the projective line via Möbius transformations: x → gx = ax+b
cx+d , where g =

(
a b

c d

)
.

Theorem 2. Let N ! 1 be a sufficiently large integer, A, B ⊆ Fp be sets, and g ∈ SL2(Fp)
be a non–linear map. Then there is an absolute constant κ > 0 such that

|{g(c + a) = c + b : c ∈ 2 · [N ], a ∈ A, b ∈ B}|− |A||B|N
p

&g

√
|A||B|N1−κ . (2)

In particular, the Cayley graph Cay(SL2(Fp), S), where

S =
{(

1 −2j
0 1

)
g

(
1 2j
0 1

)
: 1 ≤ j ≤ N

}
⊂ SL2(Fp) ,

is an expander with ‖Ŝ(ρ)‖ & |S|1−κ, κ > 0 for all non–trivial unitary irreducible 
representations ρ #= 1.
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As we said before the proof of Theorem 2 uses some calculations in free groups (one 
should take s = t = 2 in (1)), as well as some good lower bounds for the girth of the 
correspondent Cayley graph. We avoid to use this technique and obtain a more general 
(in the sense that the set S below can be much more general than (c, c), c ∈ 2 · [N ]) and 
more applicable result.

Theorem 3. Let δ ∈ (0, 1], N ! 1 be a sufficiently large integer, N " pcδ for an absolute 
constant c > 0, A, B ⊆ Fp be sets, and g ∈ SL2(Fp) be a non–linear map. Suppose that 
S is a set, S ⊆ [N ] × [N ], |S| ! N1+δ. Then there is a constant κ = κ(δ) > 0 such that

|{g(α + a) = β + b : (α,β) ∈ S, a ∈ A, b ∈ B}|− |S||A||B|
p

&g

√
|A||B||S|1−κ . (3)

In Sections 4, 5 we find several applications of Theorems 2, 3 to problems of Incidence 
Geometry in Fp × Fp (Theorem 3 itself is a result about incidences between hyperbolae 
from S and Cartesian product A ×B) and Probability. For example, we obtain an upper 
bound for the additive energy (all definitions can be found in Section 2) of sets of the 
form (A + x)−1 for a fixed A ⊂ Fp.

Theorem 4. Let A, B ⊆ Fp be sets, δ ∈ (0, 1] be a real number and |B| ! |A|δ, |A| " p1−δ. 
Suppose that {gb}b∈B is a family of SL2(Fp)–transformations such that for any b1 #= b2
the map gb1g

−1
b2

is non–linear. Then there is ε(δ) > 0 such that

∑

b∈B

E+(gb(A)) & |A|3|B| · min{|A|, |B|}−ε(δ) .

It is interesting to note that the usual sum–product estimates work in a completely 
different situation when, roughly speaking, all gb are linear see, e.g., [1, Theorem C].

Further we obtain a series of new upper bounds for some equations over Fp (e.g., see 
the third part of Theorem 19 below).

Corollary 5. Let X ⊆ Fp be a set, |X| " 3p/4, and g be a non–linear map. Then there is 
an absolute constant c > 0 such that for all s #= 0 either one has |X∩(X+s)| " (1 −c)|X|
or |g(X) ∩ (g(X) + s−1)| " (1 − c)|X|.

The main point is the uniformity on s in Corollary 5. Also, we give a new optimal 
bound for the mixing time of a Markov chain, see Theorem 13. Finally, let us remark that 
Theorem 3 implies the main result of [18] concerning Zaremba’s conjecture from the the-
ory of continued fractions (in this case one should choose S = [N ] × [N ]). Our argument 
of the proof of Theorem 3 is similar to the approach of paper [23], where a modular form 
of Zaremba’s conjecture was proved, so such connection between the Bourgain–Gamburd 
machine and continued fractions is not very surprising but it nevertheless was not widely 
known.
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The last Section of our paper concerns some further applications of SL2(Fp)–actions 
to the question about the intersections of additive shifts of multiplicative subgroups in 
F∗
p = Fp \ {0}. Consider the simplest multiplicative subgroup in F∗

p , namely, the set of 
quadratic residues

R = {x2 : x ∈ F∗
p} .

The set R is a good constructive model for the randomly chosen subset of F∗
p (each 

element of the set is taken with probability 1/2). For example, Vinogradov [30] considered 
the maximal distance d(p) between quadratic residues and it was conjectured that d(p) &
pε, where ε > 0 is any number. The first non–trivial results in this direction were obtained 
in [19], [29]. In [6] it was proved that d(p) & p1/4(log p)3/2 and the best result at the 
moment is (see [7])

d(p) & p1/4 log p . (4)

First of all, we show in the Appendix that bound (4) can be obtained using a combinato-
rial method, which differs from the classical approach and its variations, see [6] and [5], 
[13], [14]. We need the only consequence of the Weil bound on multiplicative character, 
namely, that for any different non–zero shifts s1, . . . , sk ∈ Fp one has

|Rs1,...,sk | := |R ∩ (R− s1) ∩ · · · ∩ (R− sk)| "
p

2k+1 + k
√
p . (5)

(a similar result for general multiplicative subgroups is contained in [25]). In particular, if 
k ∼ log p, then the intersection of the additive shifts from (5) is O(√p log p). Further, ap-
plying the Bougain–Gamburd machine and using SL2(Fp)–actions, we break this square–
root barrier for larger number of shifts, see Section 5. More precisely, having an arbitrary 
set of shifts S = {s1, . . . , sk}, we want to expand this set constructively (that is, any ran-
dom choice is forbidden) in the spirit of paper [4] and find S = {s1, . . . , sk, t1, . . . , tK}, 
tj = tj(S) such that |Rs1,...,sk,t1,...,tK | = o(√p). Our simple but crucial observation is 
that the group SL2(Fp) acts transparently on the sets Rs1,...,sk (more generally, on sets 
of the form Γs1,...,sk defined as in (5) or even on sets (α1Γ + β1) ∩ · · · ∩ (αkΓ + βk), 
Γ < F∗

p , αj ∈ F∗
p , βj ∈ Fp), e.g.,

R−1
s1,...,sk = Rs−1

1 ,...,s−1
k

, (6)

provided sj ∈ R. Hence our additive/multiplicative problem on size of intersection of 
additive shifts of R can be treated via the methods of growth in SL2(Fp) as in [2], 
[12], [24] etc. The growth in SL2(Fp) is known to be very fast (as, e.g., Theorems 2, 3
show this) and we apply the Bourgain–Gamburd machine to obtain some results in the 
direction in Section 5. Let us formulate a result of this Section.
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Theorem 6. Let p be a prime number, n be a positive integer, Γ < F∗
p be a multiplicative 

subgroup, Γ = −Γ, and S ⊆ Fp be an arbitrary set. Then there is a constructive set 
T = T (S) (namely, defined in (49), (50) below), |T | " 2n|S| + n such that S ⊆ T and

|ΓT | " (1 − c)n|ΓS | ,

where c > 0 is an absolute constant, which does not depend on S and T .

The bound |T | " 2n|S| + n is perhaps non–optimal (the author believes in |T | =
O(|S| + n)) and, probably, should take place for an arbitrary set T . Nevertheless, it 
seems like that it is the first result of such type.

We thank Igor Shparlinski and Jimmy He for useful remarks. Also, we thank the 
Reviewers for valuable comments.

2. Definitions

Let G be a finite group with the identity 1. Given two sets A, B ⊂ G, define the 
product set of A and B as

AB := {ab : a ∈ A, b ∈ B} .

In a similar way we define the higher product sets, e.g., A3 is AAA. Let A−1 :=
{a−1 : a ∈ A}. As usual, having two subsets A, B of a group G, denote by

E(A,B) = |{(a, a1, b, b1) ∈ A2 ×B2 : a−1b = a−1
1 b1}|

the common energy of A and B. If A = B, then we write E(A) for E(A, A). Clearly, 
E(A, B) = E(B, A) and by the Cauchy–Schwarz inequality

E(A,B)|A−1B| ! |A|2|B|2 . (7)

To underline the group operation ∗ we write E∗(A), e.g., E+(A) or E×(A) for G = R
or G = C, say, considered with the addition + or with the multiplication ×. We use 
representation function notations like rAB(x) or rAB−1(x), which counts the number of 
ways x ∈ G can be expressed as a product ab or ab−1 with a ∈ A, b ∈ B, respectively. 
In a similar way, rABC(x) counts the number of ways x ∈ G can be expressed as a 
product abc, where a ∈ A, b ∈ B, c ∈ C etc. For example, |A| = rAA−1(1) and E(A, B) =
rAA−1BB−1(1) =

∑
x∈G r2

A−1B(x). In this paper we use the same letter to denote a set 
A ⊆ G and its characteristic function A : G → {0, 1}.

Let g ∈ G and let A ⊆ G be any set. Then put Ag = g−1Ag and, similarly, let 
xg := g−1xg , where x ∈ G. If H ⊆ G is a subgroup, then we use the notation H " G
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and H < G if, in addition, H #= G. Having a set A ⊆ G we use the symbol 〈A〉 to denote 
the subgroup, generated by A.

We write F∗
q for Fq \{0}, where q = ps, p is a prime number. In the paper we consider 

the group SL2(Fq) ⊂ GL2(Fp) of matrices

g =
(
a b

c d

)
= (ab|cd) = (a, b|c, d) , a, b, c, d ∈ Fq , det(g) = ad− bc = 1 .

We need two specific subgroups of SL2(Fq), namely,

B =
(
λ s

0 λ−1

)
, U =

(
1 s

0 1

)
, λ ∈ F∗

q , s ∈ Fq .

By g∗ denote the transpose of a matrix g. Also, let us fix the notation for a unipotent 
and the Weyl element of SL2(Fq), namely,

us :=
(

1 s

0 1

)
∈ U , s ∈ Fq , w :=

(
0 −1
1 0

)
.

Having a matrix g = (ab|cd) ∈ GL2(C), we write ‖g‖ for max{|a|, |b|, |c|, |d|}.
The signs & and 1 are the usual Vinogradov symbols. When the constants in the 

signs depend on a parameter M , we write &M and 1M . Let us denote by [n] the set 
{1, 2, . . . , n}. All logarithms are to base 2. If we have a set A, then we will write a # b

or b $ a if a = O(b · logc |A|), c > 0.

3. On the Bourgain–Gamburd machine

In this Section we obtain Theorems 2, 3 from the Introduction. We start with a 
consequence of the ping–pong lemma (e.g., see [16]) applied to some SL2–actions on C. 
The second part of Lemma 7 corresponds to the uniqueness of the continued fraction 
expansion.

Lemma 7. Let s, t ∈ Z[i] be some numbers. Suppose that |s|, |t| ! 2. Then there is no 
non–trivial words of the form λI, λ ∈ C with the letters u∗

s and ut. In particular, the 
subgroup of SL2(Z[i]) generated by u∗

s and ut is free.
If we have any matrix z = (ab|cd) from 〈u∗

s , ut〉, then we can reconstruct z via (b, d).

Proof. Put g = u∗
s and h = ut. We will use the ping–pong lemma, e.g., see [16]. Let 

A = {(x, y) ∈ C2 : |y| > |x|} and B = {(x, y) ∈ C2 : |x| > |y|}, A ∩ B = ∅. 
Notice that both regions are invariant under multiplication by any non–zero number λ: 
(x, y) → λ(x, y). Then for (x, y) ∈ B and any n ∈ Z \{0} one has gn(x, y) = (x, snx + y)
and since
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|snx + y| ! |s||n||x|− |y| > (|s||n|− 1)|x| ! |x| ,

it follows that gn(x, y) ∈ A. Similarly, taking (x, y) ∈ A and an arbitrary m ∈ Z \ {0}, 
we derive hm(x, y) = (x + tmy, y) and thus hm(x, y) ∈ B. Having a non–trivial word 
gn1hm1 . . . gnk = λI in our alphabet {g, h}, we obtain for any b ∈ B

B 3 λ · Ib = gn1hm1 . . . gnkb ∈ A

and this is a contradiction. If gn1hm1 . . . gnkhmk = λI (and, similarly, hn1gm1 . . . hnkgnk =
λI), then conjugating by an gn, n #= n1, 0, we obtain gn1−nhm1 . . . gnkhnkgn = λI and 
it contradicts the previous calculations.

Let z ∈ 〈g, h〉 be a non–trivial word in our alphabet {g, h}, z = (ab|cd). Suppose 
that z = hm1 . . . gnkhmk and hence (b, d)∗ = hm1 . . . gnk(mk, 1)∗. If we have (b, d)∗ =
hm′

1 . . . gn
′
l(m′

l, 1)∗ for other numbers m′
1, . . . , n

′
l, m

′
l, then

g−n′
l . . . hm1−m′

1 . . . gnk(mk, 1)∗ = (m′
l, 1)∗

and this is a contradiction because the right–hand side belongs to B but the left–hand 
side (if it is non–trivial) belongs to A. If z = hm′

1 . . . gm
′
l−1hm′

l−1gn
′
l , then (b, d)∗ =

hm′
1 . . . gm

′
l−1(m′

l−1, 1)∗ and we use the same argument. Other words z can be considered 
similarly. This completes the proof. !

Now we obtain a generalization of Theorem 2 from the Introduction.

Theorem 8. Let N ! 1 be a sufficiently large integer, A, B ⊆ Fp be sets, and g ∈
SL2(Fp) \ B. Then there is an absolute constant κ > 0 such that

|{g(c + a) = c + b : c ∈ [N ], a ∈ A, b ∈ B}|− |A||B|N
p

&g

√
|A||B|N1−κ . (8)

Proof. We use slightly more general arguments to use it in the proofs of the results below. 
Let us remind that for t ∈ Fp we write ut = (1t|01). By the Bruhat decomposition and 
the condition g /∈ B we can write g = ut1wdut2 , d = (λ0|0λ−1) and w = (0(−1)|10). Let 
S = {(c, c) : c ∈ J} ⊆ [N ]2. In this terms our equation from (8) can be written as (let 
(α, β) ∈ S)

hα,β a := ut1−βwduα+t2 a = u−βguα a = b . (9)

We split the set of all pairs (α, β) ∈ S onto congruence classes modulo two. Thus S is 
a disjoint union of at most 4 sets Sij , i, j ∈ {0, 1} and it is sufficient to obtain (8) for 
each set Sij . With some abuse of the notation we use the same letter S for Sij . Let 
H = {hα,β : (α, β) ∈ S} ⊆ SL2(Fp). It is easy to check that
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hα,βh
−1
α′,β′ = ut1−βwduα−α′d−1w−1uβ′−t1 = ut1−βu

∗
λ2(α′−α)uβ′−t1 ∈ HH−1 , (10)

where M∗ is the transpose of a matrix M . For an arbitrary positive integer k any element 
of the set (HH−1)k has the form

ut1−β1u
∗
λ2(α′

1−α1)uβ′
1−β2u

∗
λ2(α′

2−α2) . . . uβ′
k−1−βk

u∗
λ2(α′

k−αk)uβ′
k−t1 . (11)

Notice that one can easily remove left and right terms ut1 , u−t2 in (9), (11) redefining 
A → u−t1A and B → u−t1B. After that it remains to say that the products in (9), (11)
coincide (up to λ2, λ = λ(g)) with the products without d and t1, t2, that is, with the 
case g(x) = −1/x. Hence one can apply the arguments of Bourgain–Gamburd, see [2] or 
[18, Lemma 4]. This completes the proof. !

Remark 9. From formula (10), it follows that the dependence on g in (8) is, actually, on 
λ = λ(g), where g = ut1wdut2 and d = (λ0|0λ−1) or, in other words, on the lower left 
corner of g.

Now let us prove the main result of this Section.

Theorem 10. Let k be a positive integer, δ ∈ (0, 1], δ∗ ∈ (0, 1), N ! 1 be a suffi-
ciently large integer, N " pcδ/k for an absolute constant c > 0, A, B ⊆ Fp be sets and 
g1, . . . , gk ∈ SL2(Fp) \ B be maps. Suppose that S is a set, S ⊆ [N ]k+1, |S| ! Nk(1+δ)

and the intersection of S with any hyperplane of the form zj = const, j ∈ [k + 1] is at 
most |S|δ∗ . Then there is a constant κ = κ(δ, δ∗) > 0 such that

|{uαkgkuαk−1 . . . g2uα1g1uα0a = b : (α0, . . . ,αk) ∈ S, a ∈ A, b ∈ B}|− |S||A||B|
p

&g1,...,gk

√
|A||B||S|1−κ . (12)

In particular, for any g ∈ SL2(Fp) \ B one has

|{g(α + a) = β + b : (α,β) ∈ S, a ∈ A, b ∈ B}|− |S||A||B|
p

&g

√
|A||B||S|1−κ . (13)

Proof. We use the same notation as in the proof of Theorem 8 and let us begin with the 
case k = 1, which corresponds to formula (13). As before, we know that for an arbitrary 
positive integer m any element of the set (HH−1)m has the form

u−β1u
∗
α′

1−α1uβ′
1−β2u

∗
α′

2−α2 . . . uβ′
m−1−βm

u∗
α′

m−αm
uβ′

m
(14)

(for simplicity we consider just the case λ(g) = 1, the general case is similar because we 
allow the dependence on g in (13)). Here we have removed ut1 , u−t1 redefining the sets A
and B as in the proof of Theorem 8. Also, we have considered splitting of the set S modulo 
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two. In particular, we see that if y1, . . . , ym ∈ HH−1, then ‖y1 . . . ym‖ " (2N)2m+1. 
Take a positive integer l such that (2N)2l+1 < p. Then the set of matrices (HH−1)l is, 
actually, belongs to SL2(Z). Our task is show that for any z ∈ SL2(Fp) and an arbitrary 
Γ < SL2(Fp) the following holds

∑

x∈zΓ
r(HH−1)l(x) " |H|2l

K
, (15)

where

K = N−os(1) min
{(

|H|
N

)2s
N−1, |H|2s(1−δ∗)N−1, |H|2s(1−δ∗)

}

and s is the maximal integer such that (2N)2s+1 < 2−5p1/4. By our condition we know 
that the intersection of S with an arbitrary vertical/horizontal line is at most |S|δ∗ . The 
definition of the quantity δ∗ implies the following simple bound δ∗ " (1 +δ)−1 " 1 −δ/2. 
Hence using the assumption N " pcδ and taking s sufficiently large, we obtain

logK 1 min{(2sδ − 2), s(1 − δ∗)} · logN 1 δ log p . (16)

After that estimate (13) follows by the usual method, see [2], [17], [22] or [18, Lemma 4, 
formulae (13)–(15)]. More precisely, by the Hölder inequality the error term in (13) can 
be estimated as

√
|A||B| ·

(
|B|−1

∑

s

r(HH−1)l(s)
∑

x∈B

B(sx)
)1/2l

&
√

|A||B||S|p−ζ/2l , (17)

where ζ = 1/2t+2 and t & log p/ logK & δ−1. Recalling the definition of l and using 
(16), we get

|{g(α + a) = β + b : (α,β) ∈ S, a ∈ A, b ∈ B}|− |S||A||B|
p

&
√
|A||B||S|N−Ω(ζ) &

&
√
|A||B||S|N− exp(−Ω(1/δ)) (18)

as required.
Thus it remains to obtain (15) and this is the main technical part of our proof. Usually 

(see [2]), the simplest case Γ = {1}, which corresponds to the estimate ‖r(HH−1)l‖∞ "
|H|2l
K is considered separately and it is useful and instructive to follow this classical 

scheme. By the ping–pong Lemma 7 we see that two elements of form (14)

u−β1u
∗
α′

1−α1uβ′
1−β2u

∗
α′

2−α2 . . . uβ′
l−1−βl

u∗
α′

l−αl
uβ′

l
=

= u−β̃1
u∗
α̃′

1−α̃1uβ̃′
1−β̃2

u∗
α̃′

2−α̃2 . . . uβ̃′
l−1−β̃l

u∗
α̃′

l−α̃l
uβ̃′

l
(19)
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coincide (recall that we work modulo two, that is, all variables are even, say) if and only 
if β1 = β̃1, β′

l = β̃′
l and αj−α′

j = α̃j−α̃′
j , j ∈ [l], β′

j−βj+1 = β̃j− β̃′
j+1, j ∈ [l−1]. Fixing 

α̃j , β̃j , j ∈ [l] and using the definition of the quantity δ∗, we see that the number of 
possible pairs (αj , βj) does not exceed |S|(2l−1)δ∗ and hence ‖r(HH−1)l‖∞ " |S|(2l−1)δ∗ "
|S|2lδ∗ " |H|2l

K as required.
Below we use the argument similar to paper [23]. First of all, consider the case when 

Γ is a Borel subgroup. Take h = (ps−1ps|qs−1qs) ∈ (HH−1)s, where (2N)2s+1 < 2−5p1/4

and consider the inclusion

g1hg2 =
(
α β

γ δ

)(
ps−1 ps
qs−1 qs

)(
a b

c d

)
∈ B (20)

In other words, h ∈ g−1
1 Bg−1

2 and hence taking another h′ = (p′s−1p
′
s|q′s−1q

′
s) ∈ (HH−1)s, 

we have h(h′)−1 ∈ g−1
1 Bg1. Suppose that g1 ∈ B (the case g2 ∈ B can be considered 

similarly). Then it is easy to see that q′sqs−1 ≡ qsq′s−1 (mod p) hence q′sqs−1 = qsq′s−1
and thus qs = q′s, qs−1 = q′s−1. In other words, the pair (qs−1, qs) is determined uniquely. 
Writing ps

qs
= [b1, . . . , bs], we obtain that qs

qs−1
= [bs, . . . , b1] and we can reconstruct the 

matrix h (see details in [23] or just use the second part of our ping–pong Lemma 7). 
Whence we get as in formula (19) that the number of possible inclusions is at most 
|S|(2s−1)δ∗ . Similarly, (h′)−1h ∈ g2Bg−1

2 and if g2 ∈ B, then ps−1q′s−1 = qs−1p′s−1. 
Hence ps−1 = p′s−1, qs−1 = q′s−1 and we can reconstruct (ps, qs) from (ps−1, qs−1) in at 
most 2N ways. Thus the number of possible inclusions is at most 2N |S|(2s−3)δ∗ .

Now we can assume that both g1, g2 /∈ B. In view of the Bruhat decomposition (i.e. 
one can put d = α = 0, β = b = 1, γ = c = −1) or just a direct calculation, it is easy to 
see (or consult [23]) that inclusion (20) is equivalent to

δ(qs + ωqs−1) ≡ ps + ωps−1 (mod p) , (21)

where ω = −a. Equation (21) can be interpreted easily: any Borel subgroup fixes 
a point (the standard Borel subgroup fixes ∞) and hence inclusion (20) says that 
our set (HH−1)s transfers ω to δ. In other terms, identity (21) says that the tuples 
(qs, qs−1, ps, ps−1) belongs to a hyperspace with the normal vector (δ, δω, −1, −ω) and 
hence for some other solutions (q′s, q′s−1, p

′
s, p

′
s−1), (q′′s , q′′s−1, p

′′
s , p

′′
s−1), (q′′′s , q′′′s−1, p

′′′
s , p′′′s−1)

of (21), we get
∣∣∣∣∣∣∣

qs qs−1 ps ps−1
q′s q′s−1 p′s p′s−1
q′′s q′′s−1 p′′s p′′s−1
q′′′s q′′′s−1 p′′′s p′′′s−1

∣∣∣∣∣∣∣
≡ 0 (mod p) . (22)

If we solve equation (22) with elements from (HH−1)s, then we arrive to an equation

Xqs + Y qs−1 + Zps + Wps−1 ≡ 0 (mod p) , (23)
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where |X|, |Y |, |Z|, |W | < 2−2p3/4, which is, actually, an equation in Z. We can assume 
that not all integer coefficients X, Y, Z, W (which itself are some determinants of the 
matrix from (22)) vanish because otherwise we obtain a similar equation with a smaller 
number of variables. Combining (23) and the identity qsps−1 − psqs−1 = 1, we derive

qs−1psX = −ps−1(Y qs−1 + Zps + Wps−1) −X

or, in other words,

(Xqs−1 + Zps−1)(Xps + Y ps−1) = Y Zp2
s−1 −X(Wp2

s−1 + 1) := f(ps−1) . (24)

Fix ps−1 " (2N)2s+1 < 2−5p1/4 and suppose that f(ps−1) #= 0. Then the number of the 
solutions to equation (24) can be estimated in terms of the divisor function as Nos(1). 
Further if we know (qs−1, ps, ps−1), then in view of (23) we determine our matrix from 
(HH−1)s uniquely. Now in the case f(ps−1) = 0, we see that there are at most two 
choices for ps−1 and fixing qs " (2N)2s+1 we find the remaining variables using formulae 
(23), (24). Thus in view of our condition |S| ! N1+δ we obtain

max
g1,g2∈SL2(Fp)

∑

x∈g1Bg2

r(HH−1)l(x) " |H|2l−2s · max
g1,g2∈SL2(Fp)

∑

x∈g1Bg2

r(HH−1)s(x) "

" |H|2l−2sNos(1)
(
(2N)2s+1 + 2N |H|δ∗(2s−3) + |H|δ∗(2s−1)

)
. (25)

and (15) follows in the case of any Borel subgroup Γ.
It remains to consider the rest of maximal subgroups from SL2(Fp) but the structure of 

the lattice of the subgroups is known to be very simple for this group, see [26]. Excluding 
subgroups of finite size (and considered Borel subgroups) any maximal subgroup is a 
dihedral group of size O(p), see [26, Theorems 6.17, 6.25], [2] and [17]. Below we use 
rather rough arguments just to show that an analogue of bound (25) takes place for any 
dihedral subgroup, of course it will be enough for our purpose (more delicate calculations 
can be found in [17]). Thus we consider

Cε :=
{(

u εv

v u

)
: u, v ∈ Fp, u

2 − εv2 = 1
}

,

where ε is a primitive root. Our equation is
(

xu + yv εxv + yu

zu + wv εzv + wu

)
=

(
x y

z w

)(
u εv

v u

)
=

(
ps−1 ps
qs−1 qs

)(
X Y

Z W

)
=

=
(
ps−1X + psZ ps−1Y + psW

qs−1X + qsZ qs−1Y + qsW

)

with xw − yz = XW − Y Z = 1. It follows that
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X = qs(xu + yv) − ps(zu + wv) = (qsx− psz)u + (qsy − psw)v = Au + Bv ,

and

Y = qs(εxv + yu) − ps(εzv + wu) = (qsy − psw)u + (qsεx− psεz)v = Cu + Dv .

From xw − yz = 1 one has (A, B) #= (0, 0) and (C, D) #= (0, 0). For concreteness let us 
assume that A #= 0, C #= 0. Using the last equations, as well as the identity u2 = εv2 + 1
and multiplying it by A2 #= 0 and C2 #= 0, correspondingly, we get

αv2 + βv + γ := (B2 − εA2)v2 − 2BXv + X2 −A2 = 0 (26)

and, similarly,

α∗v
2 + β∗v + γ∗ := (D2 − εC2)v2 − 2DY v + Y 2 − C2 = 0 (27)

Since ε is a primitive root and hence in particular, ε is not a square, it follows that 
the quadratic equations are non–trivial. In other words, α #= 0 and α∗ #= 0 for any 
(ps, qs). We can assume that v #= 0 because otherwise it gives at most eight points in our 
intersection. Now if v #= 0, then excluding v from (26), (27), we arrive to the relation 
between ps and qs, namely,

(αγ∗ − α∗γ)2 = (βγ∗ − β∗γ)(αβ∗ − βα∗) .

One can check that this is a non–trivial equation and hence (15) follows with K =(
|H|
N

)2s
N−1−os(1). Indeed, the homogeneous part of degree eight of the last equation is 

((BC)2 − (DA)2)2 and hence it is zero iff ε(qsx − psz)2 = −(qsy− psw)2. It follows that 
y2 + εx2 = w2 + εz2 = 0 and −εxz = yw (otherwise we have a non–trivial equation in 
qs, ps). It is easy to check using xy − zw = 1 that this is impossible.

Now it remains to obtain (12) and we use similar arguments as above. We take H =
{uαkgkuαk−1 . . . g2uα1g1uα0 : (α0, . . . , αk) ∈ S} and derive an analogue of formula (14)
for elements of (HH−1)m

uαkgkuαk−1 . . . g2uα1g1uα0−α(1)
0
g−1
1 u−α(1)

1
g−1
2 . . .

. . . g−1
k u

α(2)
k −α(1)

k
. . . u

α(m−2)
0 −α(m−1)

0
g−1
1 u

α(m−1)
1

. . . g−1
k−1u−α(m−1)

k−1
g−1
k u−α(m−1)

k
. (28)

As in the proof of Theorem 8 we can assume that gj = u′
jwu

′′
j (in other words, loosing 

the constants, which depend on g1, . . . , gk we can suppose that λ(gj) and t1(gj) in (11)
equal one). Thus as above in formula (19), we see that ‖r(HH−1)m‖∞ " |S|δ∗(2m−1). 
The only difference between the case k = 1 is a new bound for qs (again (ps, qs) de-
termines the matrix uniquely thanks to the second part of Lemma 7 or, alternatively, 
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via the uniqueness of the continued fraction expansion). From (28) we see that any el-
ement of (HH−1)m does not exceed (2N)2km+1 and hence now we can define s as the 
maximal integer such that (2N)2ks+1 < 2−5p1/4. On the other hand, for any m one has 
‖r(HH−1)m‖1 = |H|2m ! N2mk(1+δ) and as in (16), we derive

K = N−os(1) min
{(

|H|
Nk

)2s
N−1, |H|2s(1−δ∗)N−1, |H|2s(1−δ∗)

}
! pΩ(δ)

because the condition N " pcδ/k allows us to take s to be sufficiently large such that 
s 1 1/δ. As before we have used a simple bound δ∗ " (1 + δ)−1 " 1 − δ/2, which follows 
from the definition of the quantity δ∗. The rest of the argument coincides with the case 
k = 1. From calculations (17)—(18), it follows that κ does not depend on k (just because 
K does not depend on k). This completes the proof. !

Remark 11. The condition |S| > N1+δ = |[N ]2|1/2+δ/2 can be interpreted as “Hausdorff 
dimension of the correspondent Cantor–type set” is greater than 1/2, see [23]. Also, the 
condition g1, . . . , gk /∈ SL2(Fp) \ B is not really crucial. One can see from the proof 
that the argument works (with a worse constant κ(δ) > 0, of course) if just one gj is a 
non–linear map.

Question. Is it possible to relax the condition |S| ! Nk(1+δ) in Theorem 10 to |S| ! N δ

(even in the case k = 1)?

Now let us formulate a consequence of Theorem 10 for large subsets of Fp × Fp, 
having the following “measurable” form. For simplicity, we use just the case k = 1 of 
Theorem 10.

Corollary 12. Let δ, ̃δ ∈ (0, 1], A, B ⊆ Fp be sets and g ∈ SL2(Fp) \B be a map. Suppose 
that S ⊆ Fp × Fp is a set, having the form

S =
(

6
j∈J

Sj

)

6Ω , (29)

where each Sj belongs to a shift of [N ] × [N ], N " pcδ, where c > 0 is an absolute 
constant. Further let |Sj | ! N1+δ for all j ∈ J and |Ω| " |S|1−δ̃. Then there is a 
constant κ = κ(δ, ̃δ) > 0 such that

|{g(α + a) = β + b : (α,β) ∈ S, a ∈ A, b ∈ B}|− |S||A||B|
p

&
√

|A||B||S|1−κ . (30)

Indeed, obviously the set Ω coins min{|A|, |B|}|S|1−δ̃ into (30) and for each Sj , j ∈ J

one can apply Theorem 10.
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4. First applications

In this Section we obtain series applications to Incidence Geometry and Probability. 
We use Theorems 2, 8, as well as some calculations from the proof of Theorem 10.

Our first application concerns lazy Markov chains, e.g., see [10]. Namely, applying 
Theorem 8 and using the same scheme as in [24], [10], we immediately obtain

Theorem 13. Let p be a prime number, γ ∈ F∗
p , and g = (ab|cd) ∈ SL2(Fp) \ B. Also, 

let εj be the random variables distributed uniformly on {γ , −γ} and let g(−d/c) = a/c. 
Consider the lazy Markov chain X0, X1, . . . , Xn, . . . defined by

Xj+1 =
{

g (Xj) + εj+1 with probability 1/2 ,
Xj with probability 1/2 .

Then for any c > 0 and any n = c log p one has

‖Pn − U‖ := 1
2 max

A⊆Fp

∣∣∣∣P(Xn ∈ A) − |A|
p

∣∣∣∣ " e−O(c) .

The same is true for the chain Xj+1 = g (Xj) + εj+1, where εj denote the random 
variables distributed uniformly on {0, γ, −γ}.

A result similar to Theorem 13 was proved in [11] by a slightly different method based 
on the Bourgain–Gamburd machine as well.

Now we obtain two applications to some problems from Incidence Geometry over Fp. 
The first one concerns Möbius transformations and we need [20, Theorem 3.2] (also, see 
[28, Theorem 3]).

Theorem 14. Let A × B be a set of points in F2
p , and let T be any set of Möbius trans-

formations, |T | > |A|, |A| " √
p. Then

I(A×B, T ) & |A|4/5|B|3/5|T |4/5 + |A|6/5|B|7/5|T |1/5 + |T | .

Using this result we improve [28, Corollary 3, part 1] for sets having non–trivial upper 
bound for the additive energy E+.

Theorem 15. Let A, B, C ⊆ Fp. Then
∣∣∣∣

{
(a, a′, b, b′, c, c′) ∈ A2 ×B2 × C2 : 1

a + b
+ c = 1

a′ + b′
+ c′

}∣∣∣∣ #

# |A|7/5|B|8/5|C|6/5(E+(C))1/5 . (31)

In particular, for |A| " √
p one has
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|(A + A)−1 + A| =
∣∣∣∣

{ 1
a + b

+ c : a, b, c ∈ A

}∣∣∣∣ $ |A|6/5 . (32)

Proof. Let σ be the number of the solutions to equation (31). In terms of the actions 
our equation is (we redefine A, B, C to keep the general scheme of the proof)

ucwuba = uc′wub′a
′

or, in other words,

u−b′u
∗
c′−cuba = a′ .

It means that

σ =
∑

g

rGG−1(g)
∑

x∈A

A(gx) ,

where G = {u−b′u∗
c′}b′∈B,c′∈C , |G| = |B||C|. Using the Hölder inequality, we get

σ5 "
∑

g∈SL2(Fp)

∣∣∣∣∣
∑

x∈A

A(gx)
∣∣∣∣∣

5

· E(G)|G|6 .

Clearly, E(G) = |B|2E+(C) (or consult formula (19)) and applying Theorem 14, as well 
as the fact that any Möbius transformation can only have at most |A| incidences with 
the set A ×A, we get

σ5 & |A|7|B|8|C|6E+(C) log |A|

as required. Using the trivial bound E+(C) " |C|3 and the Cauchy–Schwarz inequality, 
we obtain (32). This completes the proof. !

Having a prime number p ≡ 3 (mod 4), we take i2 = −1, i ∈ Fp2 \ Fp and write 
Fp2 = Fq = Fp[i]. Any z ∈ Fq can be written as z = x + iy with x, y ∈ Fp and we 
identify Fq with Fp × Fp. Theorem 16 below is a result on incidences in Fp[i]. Of course, 
asymptotic formula (34) gives a non–trivial result for double Kloosterman sums [21] and 
we leave this deduction to the interested reader.

Theorem 16. Let p ≡ 3 (mod 4) be a prime number, A, B, C, D ⊆ F2
p be sets and 0 #=

(α, β) ∈ Fp × Fp. Then the system of the equations

(a1+b1)(c1+d1)−(a2+b2)(c2+d2) = α , (a2+b2)(c1+d1)+(a1+b1)(c2+d2) = β , (33)

where (a1, a2) ∈ A, (b1, b2) ∈ B, (c1, c2) ∈ C, (d1, d2) ∈ D has
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|A||B||C||D|
p2 + O

(√
|A||C|(|B||D|)1−δ(ε)

)
, δ(ε) > 0 (34)

solutions, provided |B||D| ! (|A||C|)ε. In particular, if |A +B| " K|A|, |B| ! |A|ε, then 
the number of the solutions to the system of the equations

xy − zw = α , xw + yz = β , x, y, z, w ∈ A (35)

is at most K
4|A|4
p2 + O(|A|2|B|−δ(ε)).

Further let δ ∈ (0, 2], N ! 1 be a sufficiently large integer, N " pcδ for an absolute 
constant c > 0, A, B ⊆ F2

p be sets and g ∈ SL2(Fp) be a non–linear map. Suppose that S
is a set, S ⊆ [N ]2 × [N ]2, |S| ! N2+δ. Then there is a constant κ = κ(δ) > 0 such that

|{g(α + a) = β + b : (α,β) ∈ S, a ∈ A, b ∈ B}|− |S||A||B|
p

&g

√
|A||B||S|1−κ . (36)

Proof. As we said before any z ∈ Fq can be written as z = x + iy with x, y ∈ Fp and 
thus we obtain four sets A, B, C, D ⊆ Fq, which correspond to A, B, C, D ⊆ F2

p . Let 
λ = α + iβ ∈ Fq. Then it is easy to check that the equation

(a + b)(c + d) = λ , a ∈ A, b ∈ B, c ∈ C, d ∈ D

coincides with (33). Again, we can use the same argument as in [17], [21, Theorem 22], 
[23] to obtain asymptotic formula (34) for the system (33). The only thing we need to 
check that an analogue of the Helfgott growth result [12] takes place for SL2(Fq) (it is 
well–known that SL2(Fq) is a quasi–random group for any q " pO(1)) but it was proved 
in [9]. Further to obtain (35) we apply (33) with A = C = (A + B) × (A + B) and 
B = D = (−B) ×B. Then each solution of (33) is counted with the weight |B|4 and the 
result follows.

Finally, to get (36) we apply the same arguments as in the proof of Theorem 10, 
using the ping–pong Lemma 7 for Z[i] instead of Z. Obviously, to calculate the norm of 
matrices we should use absolute values in C but not in R. This completes the proof. !

Remark 17. For simplicity, we have considered in (33), (35) the transformation gx =
−1/x. Of course, the same result takes place in general case (now g ∈ SL2(Fq) is an 
arbitrary non–linear transform) as in Theorems 8, 10.

Now we obtain a result on the additive energies of perturbed sets which works for 
relatively small sets of SL2–transformations.

Theorem 18. Let A, B ⊆ Fp be sets, δ ∈ (0, 1] be a real number and |B| ! |A|δ, |A| "
p1−δ. Suppose that {gb}b∈B is a family of SL2(Fp)–transformations such that for any 
b1 #= b2 the map gb1g

−1
b2

is non–linear. Then there is ε(δ) > 0 such that
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∑

b∈B

E+(gb(A)) & |A|3|B| · min{|A|, |B|}−ε(δ) . (37)

Proof. Put K−1 := |A|−3|B|−1 ∑
b∈B E+(gb(A)). Our task is to show that K 1

min{|A|ε, |B|ε} for a certain ε = ε(δ) > 0 and we suppose that, in contrary, K is a 
small number. By the pigeonhole principle there are at least |B|/2K elements b ∈ B

such that E+(gb(A)) ! |A|3/2K. Denote by B′, |B′| ! |B|/2K the set of all these b. By 
the Balog–Szemerédi–Gowers Theorem, see [27, Proposition 2.43, Corollary 2.46] for any 
b ∈ B′ there is a set Pb ⊆ gb(A) such that |Pb+Pb| & KC |Pb| and |Pb| 1 |A|/KC , where 
C > 0 is an absolute constant. Writing Xb := g−1

b (Pb) ⊆ A, we have |Xb| 1 |A|/KC . We 
have 

∑
b∈B′ |Xb| 1 |A||B|/KC+1 ! 2|A|, say, for all sufficiently small K. Hence using 

the pigeonhole principle again, we find b1 #= b2 such that |Xb1 ∩ Xb2 | 1 |A|/K2C . In 
other words, the equation g−1

b1
(x) = g−1

b2
(y), x ∈ Pb1 , y ∈ Pb2 has at least Ω(|A|/K2C)

solutions. Recalling that |Pbi + Pbi | & KC |Pbi |, i = 1, 2, we find Ω(|A|3/K4C) solutions 
to the equation

g−1
b1

u−p1s1 = g−1
b1

(s1 − p1) = g−1
b2

(s2 − p2) = g−1
b2

u−p2s2 , si ∈ Pbi + Pbi , pi ∈ Pbi .

Put g := gb2g
−1
b1

. By our condition we know that g is a non–linear map. In terms of g
the last equation can be rewritten as

up2gu−p1s1 = s2 . (38)

For sufficiently small K, we have |Pb1 |, |Pb1 | 1 |A|/KC 1
√

|A|, say. Again, we can use 
the same argument as in [17], [21, Theorem 22], [23] (also, see formula (10)), as well as 
our assumption |A| " p1−δ to see that equation (38) has

|A|3

K4C & |Pb1 + Pb1 ||Pb2 + Pb2 ||Pb1 ||Pb1 |
p

+
√

|Pb1 + Pb1 ||Pb2 + Pb2 |(|Pb1 ||Pb1 |)1−c &

& K2C |A|4

p
+ KC |A|3−c & KC |A|3−c

solutions. Here c = c(δ) > 0 is a certain number. Thus we have K5C 1 |A|c and it gives 
the required lower bound for K. This completes the proof. !

5. On intersection of additive shifts of multiplicative subgroups

We begin with deriving some further consequences of Theorem 2. Three parts of 
Theorem 19 below have the same spirit but there are some variations in parameters: 
we can take one or several shifts, we can control our shifts or not and, finally, there 
are several upper bounds for considered intersections of different quality. Also, let us 
remark that in particular, inequality (41) (with n = 1) shows that for any s #= 0 the set 
{1, u±s, u

g
±s} forms an expander in SL2(Fp). Of course, Theorem 1 of [2] says that for any 
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subset S ⊂ SL2(Z) the Cayley graph Cay(SL2(Fp), S) is an expander iff the subgroup 〈S〉
is non–elementary (that is, 〈S〉 does not contain a solvable subgroup of finite index) and 
thus we can expect some properties of expansions of the set {1, u±s, u

g
±s}. Nevertheless, 

our Theorem 19 is a more delicate result, e.g., in the first part of this theorem the 
constant c(κ) > 0 does not depend on s (as [2, Theorem 1] guarantees).

Recall that we write ag for g−1ag and let by definition a0 := a. Below in this Section 
let κ > 0 be the absolute constant from Theorem 2 or from Theorem 3.

Theorem 19. Let g ∈ SL2(Fp) be a non–linear map. Also, let κ > 0 be the absolute 
constant from Theorem 2. Then for any X ⊆ Fp, and an integer parameter N ! 1 the 
following holds:
1) Suppose that |X| " pN−κ. Then there is s ∈ 2 · [N ] such that

|(X + s) ∩ g(X + s)| " |X| ·N−κ . (39)

In particular, for any positive integer n there are sj ∈ 2 · [N ], j ∈ [n] with
∣∣∣∣∣∣

⋂

εj∈{0,1}
(gusn )εn . . . (gus1 )ε1X

∣∣∣∣∣∣
" |X| ·N−κn . (40)

2) If Y := g(X), ε ∈ (0, 1/2] be any real number and |X| " pN−κ, where N 1 ε1/κ, 
then either

|X ∩ (X + 2) ∩ · · · ∩ (X + 2N)| "
(1

2 + ε

)
|X| or

|Y ∩ (Y + 2) ∩ · · · ∩ (Y + 2N)| "
(1

2 + ε

)
|Y | .

3) As above put Y := g(X). If |X| " 3p/4, then for any s #= 0 either |X ∩ (X + s)| "
(1 − c(κ))|X| or |Y ∩ (Y + s−1)| " (1 − c(κ))|Y |.

In particular, for any positive integer n the following holds
∣∣∣∣∣∣

⋂

εj∈{0,1}
uεng

s1−2εn
n

. . . uε1g

s
1−2ε1
1

X

∣∣∣∣∣∣
" (1 − c(κ))n|X| . (41)

Proof. Let us begin with 1) because it is just a direct application of Theorem 2 (thanks 
to this result we can even assume that g(x) = 1/x, say). Indeed, by formula (2), our 
assumption |X| " pN−κ and the Dirichlet principle we can find s ∈ 2 · [N ] such that

|(X + s) ∩ g(X + s)| & |X|2

p
+ |X|N−κ & |X|N−κ

as required. Since |(X + s) ∩ g(X + s)| = |X ∩ gusX|, we get (40) via iteration.
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To obtain 2) let us consider the sets X∗ := X ∩ (X + 2) ∩ · · · ∩ (X + 2N) ⊆ X, 
Y∗ := Y ∩ (Y + 2) ∩ · · · ∩ (Y + 2N) ⊆ Y and assume that |X∗| ! (1/2 + ε)|X|, |Y∗| !
(1/2 + ε)|Y |. Since Y = g(X) and X∗ − 2j ⊆ X, Y∗ − 2j ⊆ Y , ∀j ∈ [N ], it follows that 
|(Y∗−2j) ∩g(X∗−2j)| ! 2ε|X| for any j ∈ [N ]. Hence the equation y∗−2j = g(x∗−2j), 
where j ∈ [N ] and x∗ ∈ X∗, y∗ ∈ Y∗ has at least 2εN |X| solutions. Again this contradicts 
formula (2) of Theorem 2.

Finally, to get 3) we use a variation of the argument from [10] and [24]. Let |X ∩ (X +
s1)| > (1 −c)|X| and |Y ∩(Y +s2)| > (1 −c)|Y | for some s1, s2 #= 0. Dividing and redefining 
the sets X̃ = X/s1, Ỹ = Y/s2 we can assume that s1 = s2 = 1 and let X̃ = 6j∈J Ij , 
where Ij are some intervals with step one (and similar to the set Ỹ ). Write c = c(κ) for a 
sufficiently small constant, which we will choose later. From |X̃ ∩ (X̃ + 1)| > (1 − c)|X|, 
|Ỹ ∩ (Ỹ + 1)| > (1 − c)|Ỹ |, we see that |J | " c|X|. Put L = |X|/|J | and let ω ∈ (0, 1)
be a small parameter, which we will choose later. One has 

∑
j∈J |Ij | = |X| and hence ∑

j : |Ij |!ωL |Ij | ! (1 − ω)|X|. Splitting Ij into intervals of length exactly Lω := ωL/2, 
we see that the rest is at most 2ω|X|. Hence we have obtained some intervals I ′i, i ∈ I, 
having lengths Lω and step one and such that 

∑
i∈I |I ′i| ! (1 −2ω)|X|. Put X ′ = 6i∈I I

′
j . 

Similarly, we construct Y ′ ⊆ Y , |Y ′| ! (1 − 2ω)|Y |. Then

|X| = |Y | = |Y ∩ g(X)| = |s2Ỹ ∩ g(s1X̃)| " |s2Y
′ ∩ g(s1X

′)| + 4ω|X| . (42)

It follows that |s2Y ′ ∩ g(s1X ′)| ! (1 − 4ω)|X|. Now our task is to obtain a good upper 
bound for the intersection. Let M = [ζLω], where ζ = 2−6. Thus M := |M| ! ζLω/4. We 
have |(I ′i +m) ∩I ′i| ! (1 −2ζ)|I ′i| for all m ∈ M and hence |(X ′+m) ∩X ′| ! (1 −2ζ)|X ′|. 
Again, similarly, we obtain |(Y ′ + m) ∩ Y ′| ! (1 − 2ζ)|Y ′|. Recalling |s2Y ′ ∩ g(s1X ′)| !
(1 − 4ω)|X|, we see

|s2(Y ′+m1)∩g(s1(X ′+m2))| ! |s2Y
′∩g(s1X

′)|−4ζ|X ′| ! (1−4ω−4ζ)|X ′| ! 7|X ′|/8 ,

where we have chosen ω = ζ = 2−6. From above, we get

7|X ′|M2

8 " |{s1(y′ + m1) = g(s2(x′ + m2)) : x′ ∈ X ′, y′ ∈ Y ′, m1,m2 ∈ M}| .

Let g = (ab|cd), c #= 0 and hs1,s2 = (as2, b|s1s2c, ds1). Then the last equation can be 
rewritten as y′ + m1 = hs1,s2(x′ + m2). Now using s1s2 ≡ 1 (mod p), we see that the 
lower left corner of hs1,s2 is O(1). Thus we can apply Theorem 8 with S = [M ] × [M ]
(also, see Remark 9) and obtain

7|X ′|M2

8 " M2|X ′|2

p
+ C∗|X ′|M2−κ ,

where C∗ > 0 is an absolute constant, and whence

M2|X ′| & |X ′|M2−κ . (43)
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Here we have used the assumption |X ′| " |X| " 3p/4. Estimate (43) give us a contra-
diction for sufficiently large M ! C1/κ, where C > 1 is an absolute constant. Recall 
that M ! 2−8Lω = 2−15L. Since |J | " c|X| and L = |X|/|J | ! c−1, it follows that 
M ! 2−15c−1. Taking c = c(κ) > 0 to be a sufficiently small number, we satisfy our 
condition M ! C1/κ.

To obtain (41) we just apply 1) to derive |X ∩ usX| " (1 − c(κ))|X| or |g(X) ∩
us−1g(X)| " (1 − c(κ))|X| for any s #= 0. The second possibility is equivalent to |X ∩
ug
s−1X| " (1 − c(κ))|X|. In any case we have found a word w ∈ {us, u

g
s−1} such that 

|X ∩wX| " (1 − c(κ))|X|. After that we can iterate the obtained bound. This completes 
the proof. !

Remark 20. Let us say a few words about Theorem 19. Of course in the third part of 
the result the restriction |X| " 3p/4 can be replaced to |X| " (1 − ε)p and it will just 
change c(κ) to a certain positive constant c(κ, ε) > 0. Also, it is not possible to have 
just one shift in the first part of Theorem 19, formula (39). In view of Lemma 22 below 
a counterexample is very simple. Indeed, let X = Γ ∩ (Γ − 1) − 2 and s = 2. Then using 
Lemma 22, we obtain X +2 = Γ ∩ (Γ −1) = (X +2)−1. Finally, a similar example shows 
that one cannot take κ > 1 in formula (39).

Remark 21. It is possible to consider general functions differ from Möbius transformation 
similarly to paper [24] and obtain some analogues of Theorem 19. Nevertheless, it gives 
much weaker bounds for the considered intersections. E.g., if a sufficiently small set 
X ⊂ Fp satisfies X = 1 + 1/(X − 1), then for any λ #= 0 one has |X ∩ λX| " (1 −
O(exp(− log p/ log log p)))|X|, see [24, Theorem 1].

Now we apply the bounds above to multiplicative subgroups.
Let Γ be a multiplicative subgroup of F∗

p . Also, let k be a positive integer. Given 
non–zero numbers α1, . . . , αk ∈ F∗

p and any β1, . . . , βk ∈ Fp consider a generalization of 
sets (5)

Γᾱ;β̄ = Γα1,...,αk;β1,...,βk = (α1Γ + β1) ∩ · · · ∩ (αkΓ + βk) , (44)

where ᾱ = (α1, . . . , αk) and β̄ = (β1, . . . , βk). In this Section we want to obtain new 
upper bounds for size of the sets Γᾱ;β̄ . The best current results on additive shifts of mul-
tiplicative subgroups are contained in [25]. They say, basically, that for any sufficiently 
large Γ " F∗

p , |Γ| " p1−c one has |Γᾱ;β̄ | & k|Γ|1/2+εk , where εk → 0 as k → ∞. We want 
somehow to break the “square–root barrier” (i.e. 

√
|Γ|), which appears above.

First of all, let us show how a matrix g ∈ GL2(Fp) acts on sets of the form (44).

Lemma 22. Let g = (ab|cd) ∈ GL2(Fp), c #= 0, k ! 2, α1, . . . , αk ∈ F∗
p and β1, . . . , βk ∈

Fp. Suppose that β1 = g−1(∞) = −d/c. Then we have
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gΓα1,...,αk;β1,...,βk = Γγ1,...,γk;g(∞),g(β2),...,g(βk) , (45)

where γ1 = −det(g)
c2α1

and γj = αj det(g)
α1c(cβj+d) , j ∈ [k] \ {1}.

Proof. Let |Γ| = t and g−1 = (AB|CD) = (d(−b)|(−c)a) ·det−1(g). Take any x ∈ gΓᾱ;β̄ . 
Then we have g−1x ∈ Γᾱ;β̄ and this is equivalent to

(
Ax + B

Cx + D
− βj

)t

= αt
j , j ∈ [k]

or, in other words,

(dx− b− βj(−cx + a))t = αt
j(−cx + a)t, j ∈ [k]

and hence
(
x− aβj + b

cβj + d

)t

= (x− g(βj))t = αt
j(−cx + a)t(cβj + d)−t . (46)

Let us show that the right–hand side of the last formula does not depend on x. We know 
that x ∈ gΓᾱ;β̄ and in particular, x ∈ gΓα1;β1 . In view of our condition β1 = −d/c, we 
get

−cx + a = −c · a(α1ω + β1) + b

c(α1ω + β1) + d
+ a = −c · a(α1ω + β1) + b

cα1ω
+ a = −aβ1 + b

α1
ω−1 ,

where ω ∈ Γ. Hence (−cx + a)t = (−aβ1+b
α1

)t and thus (46) can be rewritten as

(x− g(βj))t =
(
−αj(aβ1 + b)
α1(cβj + d)

)t

=
(

αj det(g)
α1c(cβj + d)

)t

for all j ∈ [k] \ {1}. In other words, x ∈ Γγj ,g(βj), j > 1 and, similarly,

gΓα1,β1 = Γ(aβ1+b)/cα1;a/c = Γ(aβ1+b)/cα1;g(∞) = Γ− det(g)
c2α1

;g(∞) .

Notice that all γj #= 0 because g ∈ GL2(Fp) and hence β1 = −d/c #= −b/a. Thus we have 
obtained the inclusion

gΓα1,...,αk;β1,...,βk ⊆ Γγ1,...,γk;g(∞),g(β2),...,g(βk) .

To get (45) apply the last inclusion and derive

|Γγ1,...,γk;g(∞),g(β2),...,g(βk)| = |g−1Γγ1,...,γk;g(∞),g(β2),...,g(βk)| " |Γγ′
1,...,γ

′
k;g−1(∞),β2,...,βk

| ,
(47)
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where γ′
j are some numbers, which we will calculate later. Here we have used the fact 

that g(∞) = a/c = −D/C and a/c #= −B/A. It is easy to check that

g−1(∞) = A

C
= −d

c
= β1 ,

and thanks to −d
c = β1, we get

γ′
1 = Ag(∞) + B

Cγ1
= da/c− b

−(aβ1 + b)/α1
= α1 .

Thus it remains to show that γ′
j = αj for all j ∈ [k] \{1} and then inequality (47) implies 

(45) because then Γγ′
1,...,γ

′
k;g−1(∞),β2,...,βk

= Γα1,...,αk;β1,...,βk . Taking j > 1, we have

γ′
j = −γj(Ag(∞) + B)

γ1(Cg(βj) + D) = ad/c− b

−caβj+b
cβj+d + a

· cα1
aβ1 + b

·
(
αj(aβ1 + b)
α1(cβj + d)

)
= αj

as required. !

It is easy to see that Lemma (22) implies formula (6) from the Introduction. Another 
example is the following (the map below was considered in [24], say): let g(x) = x/(x −1)
and Xs1,...,sk := (Γ + 1) ∩ (Γ + s1) ∩ · · ·∩ (Γ + sk). In this case, we see that if 1 − sj ∈ Γ, 
j ∈ [k], then g(Xs1,...,sk) = Xg(s1),...,g(sk).

Now we are ready to break the square–root barrier for subgroups.
First of all, let us make a general remark. Let Γ < F∗

p be a multiplicative subgroup and 
S = {s1, . . . , sk} ⊆ F∗

p be any set. For an arbitrary c ∈ Fp let us write gc = (01|1(−c)). 
Take any x ∈ ΓS and consider the subgroup 〈u−x, gx〉 ⊂ SL2(Z). It is easy to see that it 
is a non–elementary subgroup (recall that x ∈ ΓS and hence x #= 0) and whence by [2, 
Theorem 1] one has |ΓS ∩ u−xΓS ∩ gx(ΓS)| " (1 − κ(x))|ΓS |. We have det(gx) = −1 and 
gx(∞) = 0. Put S = S ∪ {−x}. Using Lemma 22, we obtain gxΓS = ΓgxS

because in the 
notation of the lemma γ1 = 1 and γj = −1/(−sj − x) = 1/(x + sj) ∈ Γ, j ∈ [|S|] thanks 
to x ∈ ΓS . Thus we get

|ΓS,S+x,gx(S),−x| " (1 − κ(x))|ΓS | . (48)

Iterating estimate (48), we obtain Theorem 6 with |T | " 3n|S| + On(1) but, first of all, 
we can do slightly better and, secondly, we remove the dependence on x in an analogue 
of (48).

Given x ∈ F∗
p write wx for uw

x−1 .

Theorem 23. Let Γ < F∗
p be a multiplicative subgroup, Γ = −Γ and S = {s1, . . . , sk} ⊆ F∗

q

be any set. Then there are numbers 1 " k1 < k2 < · · · < kl = n such that for any elements 
x1, . . . , xn with
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x1 ∈ ΓS , x2 ∈ Γ⋃
ε1∈{0,1} u

ε1
x1S

, . . . , xk1 ∈ Γ⋃
εj∈{0,1} u

εk1−1
xk1−1 ...u

ε1
x1S

,

xk1+1 ∈ Γ{xk1}
⋃⋃

εj ,η1∈{0,1} w
η1
xk1

u
εk1−1
xk1−1 ...u

ε1
x1S

, . . . ,

xn ∈ Γ{xk1 ,...,xkl
}
⋃⋃

εj ,ηi∈{0,1} u
εxn
xn ...u

εkl+1
xkl+1w

ηl
xkl

...w
η1
xk1

u
εk1−1
xk1−1 ...u

ε1
x1S

(49)

one has

|Γ⋃
εj ,ηi∈{0,1} u

εxn
xn ...u

εkl+1
xkl+1w

ηl
xkl

...w
η1
xk1

u
εk1−1
xk1−1 ...u

ε1
x1S

| " (1 − κ)n|ΓS | . (50)

provided the sets from (49) are non–empty.
Now let N be a positive integer, |ΓS | " pN−κ. Then there is a vector -α = -α(S) and 

there are at least N −N1−κ/2 numbers z ∈ 2 · [N ] such that

|Γ*α; z,S,guz (S∪2·[N ]\{z})| " |ΓS |N−κ/2 . (51)

Proof. We use the third part of Theorem 19 with X = ΓS and s = x1 ∈ ΓS . If |ΓS ∩
(ΓS − x1)| " (1 − κ)|ΓS |, then apply Theorem 19 with X = ΓS ∩ (ΓS − x1) = ΓS,S+x1

and s = x2. And so on. Finally, we find Z = Γ∪εj∈{0,1}u
εk1−1
xk1−1 ...u

ε1
x1S

:= ΓT such that for 
a certain xk1 ∈ ΓT one has |Z ∩ (Z − xk1)| > (1 − κ)|Z|. In view of Theorem 19, we 
obtain |Z ∩ wxk1

Z| " (1 − κ)|Z|. We have wxk1
= (10|x−1

k1
1) and hence det(wxk1

) = 1
and gx1(∞) = xk1 . Put T = T ∪ {x1}. Using Lemma 22 we obtain wxk1

ΓT = Γwxk1
T

because in the notation of the lemma γ1 = −x2
k1

∈ −Γ = Γ and γj = x2
k1
/(sj +xk1) ∈ Γ, 

j ∈ [|T |] thanks to xk1 ∈ ΓT . Hence ΓT ∩wxk1
ΓT = Γ{xk1}

⋃⋃
εj ,η1∈{0,1} w

η1
xk1

u
εk1−1
xk1−1 ...u

ε1
x1S

. 
After that we iterate our procedure and derive (50).

Finally, to get (51) we basically use the first part of Theorem 19 or, in other words, 
Theorem 2 with X = ΓS and gx = 1/x. In view of estimate (2) of Theorem 2 and the 
average argument there are at least N −N1−κ/2 numbers z ∈ 2 · [N ] such that

|ΓS ∩ guzΓS | = |ΓS+z ∩ Γ(S+z)−1 | " |ΓS | ·N−κ/2 .

One can check that guz = (−z(1 − z2)|1z) and hence g(∞) = −z. Applying Lemma 22
to ΓS,2·[N ], we see that guzΓS∪2·[N ] ⊆ Γ*α; z,guz (S∪2·[N ]\{z}) with a certain -α = -α(S). This 
completes the proof. !

Remark 24. To specify the set T = T (S), S ⊆ T more concretely such that |Γ*α(S);T | "
(1 − κ)n|ΓS | say, in (51) one can write in the left–hand side of (51) the following set:
Γ2·[N ],∪z∈2·[N]guz (S∪2·[N ]).
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Appendix A

The main aim of this Section is to prove bound (4) using an almost purely combina-
torial method.

Theorem 25. Let p be a prime number. Then

d(p) & p1/4 log p .

To obtain Theorem 25 we need lower bound for size of ratio sets of two intervals in 
Fp and it is crucial for us do not loose any power of logarithms. Our argument follows 
[7] and [8].

Lemma 26. Let H, H∗, a be positive integers, H∗ " H, a +H < p and 16H2
∗H < p. Then 

for all sufficiently large H∗ the following holds
∣∣∣∣

{
y

a + x
∈ Fp : (x, y) ∈ [H] × [H∗]

}∣∣∣∣ 1 H∗H .

Proof. We need to solve the equation

y(a + x′) ≡ y′(a + x) (mod p) , x, x′ ∈ [H], y, y′ ∈ [H∗] .

Using the Dirichlet principle, we multiply the last expression by an appropriate λ ∈ F∗
p

such that |λ| " ∆ and for A := aλ (mod p) one has |A| " p/∆, where our parameter 
∆ = (p/H)1/2. Then we obtain the following equation in Z

y(A + λx′) = y′(A + λx) (52)

because by our assumption

2H∗(p/∆ + ∆H) = 4H∗
√

pH < p .

In (52) we can assume that (A, λ) = 1. Let S ⊆ [H] × [H∗] be the set of all pairs 
(x, y) such that (A + λx, y) = 1. Hence identity (52) implies x = x′, y = y′, provided 
(x, y), (x′, y′) ∈ S and our task is to show |S| 1 H∗H because the last fact implies the 
lemma in view of the Cauchy–Schwarz inequality (7). We have

|S| =
∑

x∈[H]

∑

y∈[H∗]

∑

d|(y,A+λx)
µ(d) =

∑

d"H∗

µ(d)
∑

y∈[H∗], d|y

∑

x∈[H], d|(A+λx)
1 =

=
∑

d"H∗, (d,λ)=1
µ(d)

(
H∗
d

+ θ′d

)(
H

d
+ θ′′d

)
,
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where for all d one has |θ′d| " 1, |θ′′d | " 1. Here we have used the assumption that 
(A, λ) = 1. It follows that

|S| = H∗H
∑

1"d, (d,λ)=1

µ(d)
d2 + O(H logH∗) ! H∗H

(
2 − π2

6

)
+ O(H logH∗) 1 H∗H

as required. !

Now we are ready to prove Theorem 25.

Proof. Let Pa = a +{0, 1, . . . , d(p) −1} = a +P0 ⊆ R. For any positive integer m " d(p) −
1 we use the notation P 1/m

0 = {0, 1, . . . , [(d(p) −1)/m]} and, similarly, P 1/m
a = P 1/m

0 +a. 
We have

P 1/2
0

P 1/2
a

⊆ R− 1 (53)

because

P 1/2
0

P 1/2
a

+ 1 ⊆ P 1/2
0 + P 1/2

a

P 1/2
a

⊆ P 1
a

P 1/2
a

⊆ R .

Let k be an integer parameter, which we will choose in a moment. Since jP 1/2k
0 ⊆ P 1/2

0 , 
j ∈ [k], it follows from (53) that

P 1/2k
0

P 1/2
a

⊆ (R− 1) ∩ (2−1 ·R− 2−1) ∩ . . . (k−1 ·R− k−1) .

Using Lemma 26 with H∗ = |P 1/2k
0 |, H = |P 1/2

a | (we can freely assume that d(p) & p1/3) 
and formula (5) (for residues/non–residues), we get

d2(p)k−1 & |P 1/2k
0 ||P 1/2

a | " p

2k + θk
√
p & k

√
p ,

provided k 1 log p. Choosing k ∼ log p, we obtain d(p) & p1/4 log p as required. !
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