
January 2012

EPL, 97 (2012) 28005 www.epljournal.org
doi: 10.1209/0295-5075/97/28005

Networks with arbitrary edge multiplicities
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Abstract – One of the main characteristics of real-world networks is their large clustering.
Clustering is one aspect of a more general but much less studied structural organization of
networks, i.e. edge multiplicity, defined as the number of triangles in which edges, rather than
vertices, participate. Here we show that the multiplicity distribution of real networks is in many
cases scale free, and in general very broad. Thus, besides the fact that in real networks the
number of edges attached to vertices often has a scale-free distribution, we find that the number
of triangles attached to edges can have a scale-free distribution as well. We show that current
models, even when they generate clustered networks, systematically fail to reproduce the observed
multiplicity distributions. We therefore propose a generalized model that can reproduce networks
with arbitrary distributions of vertex degrees and edge multiplicities, and study many of its
properties analytically.

Copyright c⃝ EPLA, 2012

Introduction. – Real networks, where nodes (or
vertices) are intricately connected by links (or edges),
are characterized by complex topological properties
such as a scale-free distribution of the degree (number
of edges reaching a vertex), degree-degree correlations,
and nonvanishing degree-dependent clustering (density
of triangles reaching a vertex) [1]. Understanding the
structural and dynamical properties of complex networks
strongly relies on the possibility to investigate theoretical
models which are both realistic and analytically solvable.
Several analytically solvable models reproducing the most
important local property of real networks, i.e. the degree
distribution, have been proposed [1]. However, models
reproducing higher-order properties including clustering
(also called transitivity) are only a few and are either
entirely computational [2,3] (i.e. not analytically solvable)
or solvable only for particular cases, e.g., when triangles
are non-overlapping [4–7] or when the network is made by
cliques [8] or other subgraphs [9] embedded in a tree-like
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skeleton. Unfortunately, real networks generally violate
the above particular conditions, as empirical analyses
have revealed and as we will further show in what follows.
Moreover, it has been shown that clustering is only
one aspect of a more general topological organization
which is best captured by edge multiplicity [4,5,10], i.e.,
the number of triangles in which edges, rather than
vertices, participate. Besides being more informative
than vertex-based clustering, edge multiplicity strongly
determines the percolation properties of networks [11]
and their community structure [12].

A model with arbitrary edge multiplicities. – In
order to overcome these limitations, here we propose an
analytically solvable model of networks with no restriction
on their clustering properties, and able to generate edges of
any multiplicity. Let us denote by m(i, j) the multiplicity
of the edge (i, j), i.e.m(i, j) =

∑
k ̸=i,j aikakj where aij = 1

if a link between vertices i and j is present, and aij = 0
otherwise. In our model we allow each vertex i to have
k
(0)
i edges of zero multiplicity, k(1)i edges of multiplicity 1
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Fig. 1: (Colour on-line) a) Maximally clustered configura-
tion (c= 1/3) allowed for the top vertex (k= 4) in networks
with non-overlapping triangles (weak transitivity) such as
Newman’s model [6]. b) Maximally clustered configuration
(c= 1) for the top vertex (k= 4) in networks with over-
lapping triangles (strong transitivity), which is achieved in
our model by assigning that vertex a generalized degree
k= (0, 0, 0, 4, 0, . . .).

and so on, up to k(M)i edges of multiplicityM , whereM =
N − 2 is the maximum possible multiplicity in a network
with N vertices. Thus, each vertex i is assigned a (N − 1)-
dimensional vector ki ≡ (k(0)i , . . . , k

(M)
i ), that we denote as

the generalized degree, specifying the multiplicity structure
in the neighborhood of i. The ordinary degree of vertex i

is ki =
∑M
m=0 k

(m)
i . Accordingly, we consider the ensemble

of random networks with a specified distribution P (k)≡
P (k(0), k(1), . . . , k(M)) of generalized degrees.
Our approach reduces to various previously proposed

models in special cases, but is more general and allows to
analytically investigate more realistic regimes which have
not been explored so far.

– If ki = (k
(0)
i , 0, . . . , 0), our model reduces to the

configuration model [13,14] where each vertex i has a

specified degree ki = k
(0)
i , and the network is locally

tree-like (edges have zero multiplicity). This model
has vanishing clustering in the thermodynamic
limit N →∞, and is thus inadequate to reproduce
clustered networks.

– If ki = (k
(0)
i , k

(1)
i , 0, . . . , 0), Newman’s clustered

model [6] is recovered, where each vertex i has

attached k(0)i = si “single” edges and k
(1)
i = 2ti edges

belonging to ti triangles. Although this model has
a finite clustering for N →∞, it can only produce
networks in the weak transitivity regime [4,5], i.e.
where the clustering coefficient of a vertex with
degree k is c(k)! (k− 1)−1 (see fig. 1(a)).

– If ki = (0, k
(1)
i , 0, . . . , 0), we recover the model by Shi

et al. [7] where all triangles are closed. This model is
the maximally clustered version of Newman’s model,
i.e. c(k) = (k− 1)−1, but still cannot produce strong
transitivity.
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Fig. 2: (Colour on-line) Cumulative edge multiplicity distrib-
utions Φ>(m) for various real networks. Inset: histogram of
edge multiplicities (non-cumulative distribution) for the World
Trade Web (WTW), as an example of network with unusually
high density.

– If ki = (k
(0)
i , 0, . . . , 0, k

(c−2)
i , 0, . . . , 0) we recover Glee-

son’s model [8] where each vertex i belongs to a

clique of c vertices (and thus has k(c−2)i = c− 1 links
of multiplicity c− 2) and has k(0)i = ki− c+1 addi-
tional external links of zero multiplicity, thus forming
a network where cliques are embedded in a tree-like
structure. Although this model can produce networks
with strong transitivity, it forces any vertex to belong
to only one clique. Thus, it fails to reproduce networks
with overlapping communities of densely intercon-
nected vertices [12].

– Finally, if ki = (k
(0)
i , k

(1)
i , k

(2)
i , 0, . . . , 0) we recover the

model recently proposed by Karrer and Newman [9]
where, in addition to single edges and edges belong-
ing to triangles, edges belonging to diamonds (thus
with multiplicity 2) are also introduced. More gener-
ally, that model allows to embed any type of small
subgraphs into a higher-order tree-like structure, and
can thus produce strong transitivity as in Gleeson’s
model. However, the model can only be applied as
long as the set of specified subgraphs is fixed a priori,
and its analytical complexity grows rapidly with the
number and size of the subgraphs considered. The
empirical results that we will show in a moment
make this approach inadequate to reproduce real
networks.

Edge multiplicity in real networks. – In all the
above models, the fraction Φ(m) of edges with multiplicity
m is fully concentrated on the smallest possible values, i.e.
m= 0, 1, 2 depending on the particular model (except in
Gleeson’s model, where a broader distribution of multiplic-
ities can be obtained with a suitable choice of clique sizes,
however losing an important degree of freedom required
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in order to fit other properties of real networks [8]). It is
important to compare this prediction with the multiplicity
structure of real networks. In fig. 2 we show the cumula-
tive edge multiplicity distribution Φ>(m)≡

∑
n!m Φ(n)

for various real networks. We find that sparse networks,
such as the Internet and metabolic networks, display a
power-law distribution of edge multiplicities (with simi-
lar exponents). Denser networks such as the World Trade
Web show a distribution which is peaked at some very
large value (see inset).
In these and all other cases shown, the distributions

are broad and extend over many orders of magnitude, in
sharp contrast with the predictions of the above models. In
particular, scale-free multiplicity distributions imply that,
in models with modules embedded in tree-like structures,
subgraphs of any size should be attached to vertices in
order to reproduce the observed multiplicity structure. In
this situation, such models become analytically intractable
and their very philosophy becomes inappropriate. Indeed,
the empirical results shown above suggest that network
formation is much more decentralized than assumed by
locally generating non-overlapping modules of fixed size
and sparsely connecting them to one another. The concept
of module itself appears vague, due to the lack (or to the
unreasonable largeness) of a typical scale for the subgraphs
required to describe the network. Remarkably, besides the
fact that in real networks the number of edges attached
to vertices often has a scale-free distribution, we found
that the number of triangles attached to edges can have a
scale-free distribution as well.

Generating functions and clustering. – Our
model, by allowing k to have a more general structure,
can span the entire multiplicity spectrum without explic-
itly introducing subgraphs, overcoming the limitations of
the aforementioned models (see fig. 1(b)). The ordinary
degree distribution is

p(k) =
∑

k

P (k)δk,∑M
m=0 k

(m) . (1)

The generating function of the probability P (k) is

g(z) =
∑

k

(z ∧k)P (k), (2)

where z ∧k=
∏M
m=0 z

k(m)

m and g(z) = g(z0, . . . , zM ). The
generating function of the degree distribution is

G(z) =
∞∑

k=0

zk
∑

k

P (k)δk,∑M
m=0 k

(m) = g(z, z, . . . , z). (3)

We can now compute the transitivity of the network. First
we need to count the triangles:

3N△ =N
M∑

m=0

[
∂g(z)

∂zm

]

z=1

em · I =NI ·∇g(z) |z=1, (4)

where em is a unit vector of multiplicity m (i.e. e0 ≡
(1, 0, . . . , 0), e1≡(0, 1, 0, . . . , 0), etc.) and I=

∑M
m=0mem.

The total number of connected triples is

N3 =
N

2

∂2G(1)

∂z2
(5)

so that the transitivity, which is defined as T = 3N△/N3,
does not disappear when N →∞. Therefore, as expected,
our model successfully produces networks with non-
vanishing overall clustering. It can also generate any
desired clustering spectrum, i.e. the average clustering
c̄(k) of vertices with degree k. The latter is

c̄(k) =
1

Np(k)

N∑

i=1

2N△(i)

k(k− 1)δki,k, (6)

where N△(i) is the number of mutually connected neigh-
bors of vertex i. This leads to

k(k− 1)
2

c̄(k)p(k) =
∑

1·k=k
I ·kP (k). (7)

The above relations hold for every network. It is thus
possible to choose P (k) in order to reproduce both p(k)
and c̄(k) as in other models [2,3,8].

Percolation properties. – Importantly, we can study
the percolation properties of our model analytically, thus
extending previous results [3,6,8,11] to more general cases.
Let D(s|k) be the probability that a vertex of generalized
degree k is a member of a set of s mutually reachable
vertices. Similarly, let d(s|k) be the probability that a
vertex connected to a vertex v of generalized degree k
can reach s other vertices, excluding the vertex v and its
neighborhood. The relation between D(s|k) and d(s|k) is

D(s|k) =
∑

s1 ,...,sk

d(s1|k) · · · d(sk|k)δs,1+s1+...+sk . (8)

We can also write a recursion relation for d(s|k) as

d(s|k) =
∑

h

min(h,k)−1∑

m=0

p(h,m|k)

×
∑

s1 ,...,shr

d(s1|h) · · · d(shr |h)δs,1+s1+...+shr , (9)

where p(h,m|k) represents the probability to select,
around a vertex of generalized degree k, an edge of
multiplicity m leading to a vertex of generalized degree
h. The reduced degree hr is the number of vertices
attached to the destination vertex except itself and the
neighborhood of the first vertex i.e. hr = h−m− 1. If
degree-degree correlations can be neglected, p(h,m|k)
reads

p(h,m|k) = k
(m)

k

h(m)P (h)

⟨k(m)⟩
. (10)

The first fraction in eq. (10) represents the probability to
leave a vertex of generalized degree k following an edge of
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multiplicity m. The second fraction is the probability to
reach a vertex of generalized degree h following that edge.
We can also use eq. (9) to write the generating functions
d̂(z|k) =

∑
s z
sd(s|k) of the probabilities d:

d̂(z|k) = z
∑

h

min(h,k)−1∑

m=0

p(h,m|k)
[
d̂(z|h)

]hr
. (11)

If eq. (11) has a stable solution d̂(z = 1|k)! 1, the network
percolates. In order to study the stability of eq. (11)
around z = 1 we can study a perturbative solution d̂(z =
1|k) ≈ 1+χ(k)ϵ in the limit ϵ→ 0, which yields

χ(k) =
∑

h

min(h,k)−1∑

m=0

p(h,m|k)(h−m− 1)χ(h)

=
∑

h

min(h,k)−1∑

m=0

k(m)h(m)

⟨k(m)⟩k
(h−m− 1)P (h)χ(h)

=
∑

h

[α ·β(h− 1)−α · (I ∗β)]P (h)χ(h), (12)

where α= k/k, β=
∑
m
h(m)

⟨k(m)⟩em and I ∗β≡∑
m Imβmem is a vector. The percolation transition

occurs when the maximum eigenvalue of the matrix in
eq. (12) is larger than 1 i.e. Λmax > 1. Thus, we have
obtained an analytical expression for the percolation
transition, more general than the one known for networks
in the weak transitivity regime [5], and valid for any level
of clustering and multiplicity.

Rich-club effect. – As another example of the effects
of broad edge multiplicities, we now consider the rich-club
coefficient R(k), defined as the observed number of
edges E>(k) among the N>(k) =Np>(k) vertices with
degree larger than k (where p>(k) is the cumulative
degree distribution), divided by the maximum allowed
number N>(k)(N>(k)− 1)/2 ≈ N2p2>(k)/2 [15–17]. In
random networks with given degree distribution, the rich
club behaves approximately as R(k)Rand ∼ k2

⟨k⟩N [16],

so that the measured R(k) must be compared to this
non-constant value. We now consider the case when, as
in our model, one also specifies a multiplicity distribution
Φ(m). Since every edge (i, j) with multiplicity m(i, j)" k
surely connects two vertices i, j with degrees ki, kj >k,
the expected value of E>(k) now receives a contribution
EΦ>(k) from edges with multiplicity m" k (where E is
the total number of edges), and the standard approxima-
tion can only be applied to the remaining E(1−Φ>(k))
edges. Following [16], we obtain the modified expectation

R(k)Rand ∼ Φ>(k)
⟨k⟩

Np2>(k)
+ [1−Φ>(k)]

k2

⟨k⟩N . (13)

If, as in some of the networks considered above, the
cumulative distributions Φ>(k) and p>(k) are power laws
with exponents −α and −γ, respectively, the asymptotic
behavior of the first summand is ∼ k2γ−α thus reducing or
increasing the predicted scaling ∼ k2.

Graphic generalized degree sequences. – There
have been many attempts in the literature to generate
null models of real networks by generating ensembles
of random graphs with given properties. Some of these
approaches make use of generating functions [4,5,14], as
in the present paper. Other approaches aim at construct-
ing randomized ensembles computationally, and generate
so-called microcanonical ensembles [18–21] of networks
with sharp constraints. Finally, other approaches aim
at describing random networks with given properties
analytically, and generate (grand)canonical ensembles of
networks with soft constraints [22–27].
If our model is used as a null model for a particular

real network, it gives predictions about the ensemble
of random graphs having the same generalized degree
sequence {ki}Ni=1 as the real network. This generalizes
the configuration model [13,14] where only the ordinary
degree sequence {ki}Ni=1 is specified. In the latter case, if
{ki}Ni=1 is taken from a real network, one is sure that it is a
graphic sequence. Otherwise, if one generates it artificially,
one must enforce specific conditions, given by the Erdős-
Gallai [28] and Havel-Hakimi [29] theorems, ensuring that
the sequence is graphic. In our case, the realizability of
{ki}Ni=1 is much more complicated than in the case of
ordinary graphic degree sequences, but we now show how
it can be related to the standard problem. For convenience,
we define the N ×(N − 1) matrix Q with entries Qij ≡
k
(j−1)
i . The row and column sums (i.e. the margins)
of Q are the degree sequence and the (unnormalized)
multiplicity distribution, respectively:

Qi+ ≡
N−1∑

j=1

Qij =
N−2∑

m=0

k
(m)
i = ki, (14)

Q+j ≡
N∑

i=1

Qij =
N∑

i=1

k
(j−1)
i = 2E(j−1), (15)

where E(m) denotes the total number of edges with
multiplicity m. Therefore, as a first condition we find that
the marginal (ordinary) degree sequence {ki}Ni=1 must be
graphic. There are, however, strong additional constraints.
First note that, since we can always partition the edges in
disjoint sets (each with given multiplicity), each of the

M sequences {k(m)i }Ni=1 must be separately graphic. This
introduces constraints along each column of Q. Moreover,
since edge multiplicities must be consistent with each
other, there are also constraints along each row of Q.
A useful mapping allows us to solve the problem. For a

given vertex i, we consider the subgraph Γi whose vertices
are the neighbors of i and edges are their mutual connec-
tions. An example is shown in fig. 3 (note that Γi does
not contain vertex i itself). If we denote by [x]i the value
of a topological property x (e.g. the number E of edges,
or the link density D= 2E/[N(N − 1)]) when measured
on the subgraph Γi, we find important relations, e.g.

[N ]i = ki; [D]i = ci; [kj ]i =m(i, j). (16)
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Fig. 3: (Colour on-line) On the left side, a generic network
with N = 6 vertices is shown, and the edges attached to vertex
i are highlighted (cyan dashed edges). The (N − 1)-dimensional
generalized degree of vertex i is in this case ki = (1, 1, 2, 1, 0)
(since the multiplicities of the dashed edges are mia = 2,
mib = 2, mic = 3, mid = 1, mie = 0, and there is no edge
with maximum multiplicity N − 2 = 4). On the right side, the
i-associated subgraph Γi is shown. The degree of each vertex
j in Γi coincides with the multiplicity m(i, j) of the edge
connecting j to i in the original graph on the left.

In other words, the number of vertices and link density
of Γi coincide with the degree and clustering coefficient
of vertex i measured on the whole network, respectively.
Similarly, the degree of vertex j in Γi coincides with the
multiplicity m(i, j) in the whole network. Since there are

k
(m)
i vertices in Γi whose degree [kj ]i equals m, k

(m)
i is the

unnormalized degree distribution of Γi, and the associated
degree sequence {[kj ]i}i={m(i, j)}i must therefore be
graphic. This observation enforces the required constraints
along the rows of Q (and also shows that our model, by
specifying the entire degree distribution of Γi, is a sort
of configuration model for each graph Γi; by contrast,
models that specify the clustering coefficient ci alone are
a sort of Erdős-Rényi random graph reproducing only the
link density of Γi). Taking the two conditions together,
we find that a necessary condition for a generalized degree

sequence {ki}Ni=1 to be graphic is that, for fixed m, k
(m)
i

is a graphic degree sequence and, for fixed i, k(m)i is a
graphic degree distribution. This Sudoku-like condition
operates along each row and column of Q simultaneously.

Conclusions. – In this paper we have shown that real
networks display broad, and often scale-free, edge multi-
plicity distributions. Existing models cannot reproduce
such feature and are therefore inadequate to predict vari-
ous properties of real networks. We have therefore intro-
duced a model for networks with arbitrary generalized
degree sequences. Unlike previous approaches, our model
can take as input detailed information about the observed
multiplicity structure to give refined analytical predic-
tions about various network properties. We have finally
exploited a useful mapping to give necessary conditions
for a generalized degree sequence to be graphic.
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