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Imperfections in a two-dimensional hierarchical structure
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Hierarchical and fractal designs have been shown to yield high mechanical efficiency under a variety of loading
conditions. Here a fractal frame is optimized for compressive loading in a two-dimensional space. We obtain
the dependence of volume required for stability against loading for which the structure is optimized and a set of
scaling relationships is found. We evaluate the dependence of the Hausdorff dimension of the optimal structure
on the applied loading and establish the limit to which it tends under gentle loading. We then investigate the
effect of a single imperfection in the structure through both analytical and simulational techniques. We find that
a single asymmetric perturbation of beam thickness, increasing or decreasing the failure load of the individual
beam, causes the same decrease in overall stability of the structure. A scaling relationship between imperfection
magnitude and decrease in failure loading is obtained. We calculate theoretically the limit to which the single

perturbation can effect the overall stability of higher generation frames.
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Hierarchical designs are found throughout nature where
optimization for one or more mechanical functions can be
observed. The direction-dependent adhesive interface on the
gecko’s toes [1], the trabecular bone, which exhibits remark-
able strength and stiffness [2,3], and spider capture silk’s
exceptional elasticity [4,5] are all dependent on hierarchical
geometries with features over a wide range of length scales.

Recent theoretical works assessed the benefits that can
be obtained from self-similar hierarchical designs [6—10].
However, in attempting to create structures of high efficiency,
inevitable initial imperfections can result in problems of
reliability [11]. The technique of naive optimization (used in
Refs. [6-10]) is a useful tool in creating theoretical bounds
for efficiency of structures. It is often the case, however, that
through its implementation, high imperfection sensitivity is
introduced [11]. The deviation of parameters describing a
structure from their theoretical ideal is inevitable. It is therefore
essential that the imperfection sensitivity is investigated before
designs exploiting hierarchy can become practical [12,13].

We first introduce a two-dimensional hierarchical design
and optimize it for mechanical efficiency under gentle com-
pressive loading. We present a scaling of material required
for stability against the compressive load it is required to
withstand. This scaling law can be manipulated through
changing the hierarchical order of the structure. We obtain
the fractal dimension of the optimal structure and show a
nontrivial dependence on the loading for which the structure
is optimized. Then we introduce a single imperfection in the
composite structure: a single central beam is perturbed. We
find theoretically the effect of this perturbation on generation-1
and -2 structures. Observations on the limit of sensitivity for
higher-order structures are made. The generation-1 frames
are then investigated through finite-element simulations; good
agreement between analytic and computational results is
found.

The two-dimensional geometries that are investigated here
can be thought of as cross sections of a three-dimensional
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structure that is assumed to be uniform over suitably long
length in the remaining spatial dimension. The analysis of
two-dimensional hierarchical structures is also of engineering
relevance. Truss structures found in a wide range of appli-
cations are restrained such that the analysis is reduced to a
two-dimensional optimization problem; roof and bridge truss
structures serve as prime examples. Furthermore, many of
the properties of the two-dimensional structure are likely to
be found also in the three-dimensional counterpart (such as
Refs. [10,14]), while the two-dimensional structures are more
amenable to computational methods.

The structures considered in this article are typically
referred to as imperfection insensitive [15]; this classification
also applies to their three-dimensional counterparts such as
those presented in Refs. [10,14]. These designs are often
limited by excessive deflection [15]. It is found that in the case
of the optimized structures considered here, the deflection of
the imperfect structure on a global scale causes extra loading
on the substructures and thus causes a local failure. While the
structure is globally imperfection insensitive, local buckling
gives a natural failure definition.

I. OPTIMIZATION OF THE PERFECT
HIERARCHICAL FRAME

The hierarchical structure considered here is generated
through an iterative process. The generation-O structure is
a simple solid beam: A simple truss structure made up of
solid beams represents a generation-1 structure (see Fig. 1).
The generation-2 structure is created by replacing all simple
beams in the generation-1 structure with scaled generation-1
frames. Higher-order structures can be obtained through the
same replacement procedure. The notation here will follow that
used in related works [8,9]: X ; represents the parameter X at
the ith hierarchical level (i = 0 being the smallest and i = G
being the largest) of a structure with G + 1 characteristic
length scales.
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FIG. 1. (Color online) Generation-1 structure and notation used
throughout this paper.

A. Generation 0

For the purposes of comparison, a freely hinged beam of
length L made from an isotropic material, in two dimensions,
will be termed a generation-0 structure. We introduce F as a
loading parameter with dimension M T ~2. This can be thought
of as force per unit length of structure in the remaining spatial
dimension. Assuming plane strain conditions, this beam will
fail when the applied load F' on the beam reaches the Euler
buckling load [16]

F=—¢, (1)

where D is the flexural rigidity of the structure. A beam of
thickness ¢ in two dimensions can be seen to have a flexural
rigidity of
Ye?
D=—F—,
12(1 —v?)

where Y and v are the Young’s modulus and Poisson ratio
of the material, respectively [17]. The frames we describe
here are hierarchical or fractal over a finite range of length
scales. In bulk materials with a hierarchical microstructure,
it is sometimes useful to calculate effective scale-dependent
elastic moduli [18]; however, in our calculations we do not do
this: Y is the Young’s modulus of the material itself, defined at

2)
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the smallest continuum scale (much smaller than the smallest
mechanical member of our structures and much larger than the
atomic scale). It is not a scale-dependent parameter. We define
the nondimensional variables

_F(1—?)
="y ®
4
V= E, (4)

where V is the volume of the structure per unit length
into the page (that is to say, its cross-sectional area). It is
straightforward to show that in the case of a generation-0
structure, the scaling of nondimensional material v required to
make a stable structure under the nondimensional load f is

v~ 1R ®)

Here we investigate the limit of gentle loading, or f < 1, thus
higher powers of f in the above expression lead to a decrease
in the required volume to create a stable structure under a given
loading f.

B. Generation 1

The generation-1 structure considered here is a simple
frame with end points at (0,0) and (L, ;,0) as shown in Fig. 1.
If the length of each constituent vertical or horizontal beam
is L 0, then it can be shown that this length is related to the
length of the whole frame L | through the expression

Lii =1 +2)Lp, (6)

where 7 ; is the number of box sections in the frame (in the
example shown in Fig. 1, n; | = 7). If the loading on the entire
frame is F} 1, each of the vertical constituent beams of length
L o supports the load

Fio= T 7

We note that the generation-1 structure has two modes of
failure: the first, the local failure of a constituent beam;
the second, the global failure of the whole structure. For
convenience we define

Fg.o(1 —v?)
fo= IGO0 7 )
YLigo
Using Egs. (1), (2), (7), and (8), it is found that the thickness of

the constituent vertical beams such that they are on the point
of failure by Euler buckling is given by

12\
1% = Lig ( {O> ' )
b/

Due to the geometry of the frame, the end beams support an
increased loading when compared to the vertical beams. They
also span a greater length; thus an increased value of 7 is
required for stability. The critical value of thickness for these

beams is
1/3
154/5
1V =L, <—“/_ﬁ> . (10)
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In the perfect truss structure, the diagonal beams within the box
sections resist no loading but are necessary for rigidity of the
frame. It is noted that by having a spring constant of diagonal
and horizontal beams in the structure similar to that of the
vertical beams, the generation-1 structure behaves as a Euler-
Bernoulli beam under deformation; thus their thickness is set to
t©_ The flexural rigidity of the composite frame is dominated
by the contributions from the beams furthest from the neutral
axis of the frame [17]. Thus it can be approximated by

072
viOL3,
2(1 —v?)’
This approximation becomes more precise with increasing

ni1. Using Egs. (1) and (10), it can be shown that for the
whole structure to be on the point of global failure

L ) n4/3121/3J 1)
np=|—2+ |——=5|>
Vs

where |-]| is the floor function. Then, using Eqs. (3) and
(6)—(8), it is found that

~

Dy ~

(1)

4/3
41

f= 72/3121/6° (13)

It is found that the volume of the generation-1 structure is
given by

V() =[G+ V2)n11 + 6]Lg ot (14)
and using Eqgs. (4), (9), (10), (12), and (14) we obtain
23 +V2)12'6 55 8V2
VR —

Thus, we see to leading order
v~ f172, (16)

showing greater efficiency in the limit of light loading when
compared to the generation-0 structure.

C. Generation 2

To construct the generation-2 truss structure, all simple
beams in the generation-1 design are replaced with scaled
generation-1 frames. Part of a generation-2 structure is shown
in Fig. 2, where the terminology for the generation-2 frame is
also introduced. We observe that all the scaled generation-1
subframes that resist compression are under one of two loading
conditions: either that experienced by the subframes connected
directly to the end points or the reduced load and length of
the subframes parallel to the neutral axis of the generation-2
structure. We define L o to be the length of the simple beams
bearing compression in the central subframes (see Fig. 2). For
the component beams in the vertical subframes to be on the
point of failure, using Egs. (1), (2), and (8), their component
beam thicknesses must be given by

12 173
r<°>=(n—f°) Ly, (17)
1/3
15V/5
t<1>=(_2 g) Loo. as)
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FIG. 2. (Color online) Section of the generation-2 frame and the
parameters that describe it. Here the frame has been rotated through
7 compared to Fig. 1.

where @ and ¢V are the thicknesses of the central and end
beams respectively (as shown in Fig. 2). Then, through stating
that the central subtrusses themselves must be on the point
of failure, through use of Egs. (1), (6), (11), and (17), ny; is
found to be

4/3121/3
T J (19)

nyp=| -2+ [———
L 455"

For the subframes connected directly to the loading points of
the generation-2 frame two parameters are introduced: L) ; is
the length of the shortest beams that make up the subframe
and n, | is the number of box sections that make up the
subframe. Then, using Egs. (1), (2), and (8) and specifying
that all component beams are on the point of failure, it is
found that

1/3
6+/5

= (Tf) (L24L20)". 20)
75 fi 173 , 1/3

3 = (Zﬂ_‘;) (L20Lao)"’. 1)

By stating that the end frames must also be on the point of fail-
ure and noting that L, | = (na,1 +2)Ly 0= %(n’l1 + Z)le,o it
can be shown that

”/2,1 =ny. (22)

Therefore, Egs. (20) and (21) become

1P =11 (23)
375 fo\'°
1@ = <E%) Lyo. (24)

We choose that the generation-1 subframes perpendicular to
the long axis of the generation-2 structure take the same
parameters as those parallel to the neutral axis. The diagonal,
longer subframes differ from these structures only by a factor
of +/2 in the length of their component beams. In the perfect
frame, these structures bear no compressive load.
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Due to the geometry of the truss, we note that all the simple
beams that resist compression have equal spring constants.
This universal spring constant for all simple compression
bearing beams is found to be

1/3
koo =Y <%> . (25)

72

The spring constants of the compression bearing generation-i
frames (or subframes) are given by

Bk
dn 455+ 1

We note the spring constants of the generation-1 compression
bearing subframes are independent of the load they resist. It
can be shown, through direct calculation including only the
contribution from those beams parallel to the neutral axis of
the entire structure (neglecting the effects of the end triangles
at both hierarchical levels), that the flexural rigidity of the
generation-2 frame is approximated by

(26)

2,0

YL3,1©
Dyp e —2 27)
1—v
Given that
Lyy = (n22+2)Ly (28)
Fy=2F,, (29)

it can be shown that for the whole generation-2 structure to be
on the point of failure

nyy =ny. (30)

The total volume of the generation-2 truss structure can be
shown to be

V(2) = [3 + V2)na + 61 Lot ©. 31
Using Eqgs. (3), (6)—(8), (28), and (29), it is found that
16 5/3

f= T4/3121/370 (32)
Thus, it can be shown that, to leading order,
v~ f, (33)

which shows a further gain in efficiency when compared to the
generation-1 structure in the limit of light loading.

D. Generation G

The generation-G structure can be created using an iterative
process. The generation-G frame is created by taking a
generation-(G — 1) frame and replacing all simple beams
scaled with generation-1 frames. The generation of the
structure G is defined as the number of iterations of this
procedure that have taken place. We see that, due to the
geometry of the generation-1 design, for a given hierarchical
level, the length of any subframe or beam will be dependent
on the position within the frame. It can be shown that for the
beams or subframes of minimal length at each hierarchical
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level
Lg; = (ngi+2)Lg,i-1, 34
22y L2, 1O
Dg; " ———————, (35)
’ 1 —v2
Fgi=2Fg;_i. (36)

We note that D¢ ; has been calculated directly by considering
the contributions of all beams parallel to the vertical axis of
the generation-G frame; the effect of the end beams at each
hierarchical level is not included. We note further that this
approximation becomes more precise with increasing values
of ng,;. If we specify that

ng,i = L—z +

for all frames and subframes regardless of i and position in
the structure, then it is found that all subframes and simple
beams under compressive load will have lengths within the set
{L(G"?i}, where

4/3121/3

_— for 1<i<G 37
2/3
afy J

5 n
LY = (%) Loi, 0<n<G-—i, (38)

and Lg ; is the minimum length of all subframes or beams at
that particular hierarchical level. These subframes or beams
of minimum length will be those passing through x = LZ'“
(assuming 7 is odd). From the geometry of the frame, it can
be shown that each simple beam with length L(c’;.)o will take the

loading of
V5\"
Fy = (7) Fe.0, (39)

where n takes the same value as in Eq. (38) with i = 0. It
can therefore be shown that for every beam under compressive
loading to be on the point of failure

n 1/3
M = (ﬁ) (%) . (40)

2 w2

The parameters Xg; describing subframes at level i
perpendicular to the neutral of the frame (or subframe) at level
i + 1 are chosen to be identical those subframes parallel to the
neutral axis. We choose that the diagonal subframes within
each box section take the same values of beam thickness
and n as the subframes that enclose them; the length of the
component beams, however, is a factor of ﬁ greater than the
equivalent beam in the surrounding subframes. In the perfect
structure, these subframes experience no compressive load. In
a frame containing small imperfections of the type described
in this paper, they are significantly overengineered.

Considering the volume of a generation-G truss structure,
we find that

V(G) = [(3+V2)n +61°Ly . (41)

Furthermore, it can be shown that, for all G > 1,

_22G 1 o2 1+G/3 42
f= TV 0 . (42)
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FIG. 3. Nondimensional volume against loading parameter for
generation-0 to -4 designs shown on a log-log scale. Curves are
only plotted when the structures involved are suitably slender for the
approximation in Eq. (35) to be valid.

Then, through use of Eq. (4), (34)—(37), (40), and (41) we
obtain, to leading order,

v~ f(G+l)/(G+3)’ (43)

which shows in the limit of small f that increasing the
hierarchical order of the structure leads to an increase in
efficiency. In Fig. 3 a log-log plot of v against f is shown for
generations 0 to 4. The Hausdorff dimension of the optimal
structure is also calculated and its dependence on loading is
shown in Fig. 4.

II. IMPERFECTIONS IN THE HIERARCHICAL FRAME

Here we model the effect of an initial imperfection in
a hierarchical frame. Through analytic models, we obtain
the effect of a single beam’s thickness being perturbed in a

_
)
=

1.24

Hausdorff dimension

—
N
\S]

-60 -50 -40 -30 -20
log, (/)

FIG. 4. Evolution of the fractal dimension of the optimal structure
against the loading for which it is optimized. We note that this is
not a function of applied load but a product of the optimization
process. Discontinuities represent changes in optimal generation with
increasing generations being favorable at smaller loading parameters.
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generation-1 and -2 frames. We find that for both strengthening
and weakening the individual beam, the failure loading for
the frame is reduced due to the introduction of asymmetry.
Through finite-element methods, a generation-1 frame is
analyzed with the same single-beam perturbation. Good agree-
ment between finite-element and analytic models is found.

A. Generation-1 analytic

We choose to model a simple imperfection: A single beam’s
thickness is perturbed from ¢ to r + A¢. We take the perturbed
beam to be a vertical beam halfway up the length of the frame
with nodes at (—%, %) (assuming n ; is odd).

1. Deformation under loading

In the limit of small loading, the perturbed beam will
experience a load of =+ F‘ L and have a spring constant different
from all other beams i 1n the frame. Thus, as shown in Fig. 5,
asymmetry will be introduced into the deformation of the
frame. Globally, the deformation of the neutral axis of the
truss y{ | can be expressed as

2a111x (n+1DLio
Lin—Lio’ * e [O’ 2 ]
+1)L +3)L
y(l)!l(x)z ap i, = [(n 2) 1,o,(n ) 1,0] (44)
2ay,1x (n+3)L1o
2al,l - Lia+Lio’ € [ 2 7Ll,l]’

where a; ; is the magnitude of the deflection and is given by

P Lig—Lio Fu Fy oAt (45)
b 2 Ky ) 210G ¢ Ary’

Above, k| | is the spring constant of the frame above the

perturbed beam (that is, of the triangle and ~ 1=l pox sections).

The deformation of the entire frame [Eq. (44)] can be written
as an infinite Fourier series [19]

8a1 . Z(— sm (2k + I)LH]

(2k 4+ 1)? ’
For larger compressive forces the deflection of the neutral axis
will not remain as in Eq. (44). The total deflection of the frame
will then be described as

Yii ZY?,1+Y11,1’ (47)

keZ. (46)

where y{ | is the dominant deflection for small loading and
yi 1 is the deformation caused by the further compression of
the truss. The evolution of y| | is governed by the differential
equation

dZyl

dx?
Following the analysis of Timoshenko and Gere [17], it can be
shown that the total deformation of the frame is given by

1+ Fi1\ 8ai; 1 . X7
= —Sln —_— —_ e .
Y1 Ffl 2 | 1= % I

1,1

= Ay sin [ = (49)
= Ay, S L — .,

1,1

Y,

= —FLi( + ) (48)
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FIG. 5. Schematic showing the triangular deflection of a
generation-1 frame caused by the weakening of the beam halfway
up the frame on the left or by strengthening of the beam halfway up
the frame on the right.

It is seen that in the region of Fy ; ~ F{ , the series in Eq. (49)
is dominated by the first term in the éxpansion. The nature
of the bifurcation of the perfect system with a critical point
at the Euler buckling load is known as a stable-symmetric
bifurcation [20]. This is where in the imperfect truss structure
there is no point of failure analogous to the critical point of
Euler buckling for the perfect frame. Instead, for the perturbed
system, the deflection increases rapidly as the Euler load is
approached.

2. Effects of curvature

We now investigate the effect of imposing a sinusoidal
deflection on the neutral axis of a generation-1 frame. It
is noted that as the loading approaches the Euler limit,
the imperfect frame described above takes deflection of
this form. Imposing a deformation from the initial straight

PHYSICAL REVIEW E 89, 023201 (2014)

configuration of

. 7x
y = asin <L_) (50)

1,1

will cause a curvature in the frame, which will result in a
difference in length between the inner and outer beams in the
frame 5L1C,0- If Ry represents the radius of curvature of the
frame, it can be shown that

Or1Ri,1 = Ly, (51)
L
I <R1,1 - %) =Lio— 8Lf0 (52)

will be satisfied for some ®; ;. In obtaining the above expres-
sions we have made the assumption that the whole generation-1
frame behaves as a Euler-Bernoulli beam. The radius of
curvature is related to lateral displacement of the frame by

1 d*y

dx?

.~ . 53)
Ry (

It is observed that the radius of curvature will be minimal at
x = % The maximal value of SLfO can therefore be related
to a in Eq. (50) through the expression

2 2
5LC Ll,oan

= 54
1,0 2L%,1 (54)

Assuming Hookean behavior of the component beams, this
increased compression signifies an increased loading on the
beam.

3. Failure criteria

The critical point on the fundamental path of the generation-
1 truss structure representing Euler buckling does not exist on
the fundamental path of the imperfect structure. Instead, the
deflection of the structure increases significantly as the Euler
loading value is approached [11]. Due to the deflection of
the structure, the loading on the component beams will be
increased. Thus, we define failure of the whole structure to be
when any component beam fails due to Euler buckling. The
maximal loading on an individual beam in the generation-1
imperfect structure will be in the center of the truss, where the
curvature is at its greatest. Here the beam on the inside of the
curvature will experience a maximal loading F’ lMo of

FM = Fi o+ kQSLS,, (55)

where Fj is the loading on the vertical component beams
in the perfect truss structure. Equating F, 1Mo with the Euler
buckling load of the component beams as given by Eqgs. (1)
and (2), we can find the value of A; ; that will lead to failure
of the component beams. This is found to be

. 23, (72OP  Fi
L1 JTZL%’O 12L1,0 kl’() ’

(56)

Through equating the coefficient of sin(%) in Eq. (49) with
Eq. (56), the loading at failure of the generation-1 beam with
a single imperfection can be calculated. The evolution of A ;
predicted by Eq. (49) is plotted in Fig. 6 against loading for
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FIG. 6. (Color online) Evolution of A, ; as predicted by Eq. (49)
along with its critical value from Eq. (56). The particular frame shown
is optimized for f = 7.59 x 1078 (n;; = 101).

various imperfection magnitudes; also shown is the figure is
the critical value of A, given in Eq. (56).

The above analysis is only valid, however, in the case
where the failure loading is very close to the Euler loading
limit of the frame. If At is large enough and negative, failure
occurs before the global deformation contributes significantly
to the stress experienced by the perturbed beam. Failure in this
case will simply follow the Euler load of the simple beam
with a decreased width ¢ — |Af|. An important prediction
of this analysis is that any asymmetric perturbation of a
component beam, be it decreasing or increasing the thickness,
will lead to a decrease in overall failure load of the composite
structure.

Plotted in Fig. 7 is the value of the loading param-
eter at which a particular frame will fail against the
magnitude of imperfection for both A¢z > 0 and Ar < 0.

F —— Global deformation induced ]

r — Local failure (At < 0) 1

0.1¢ E

ULL'_ 0.01 - E
~ £ 3
LL:_ L _- 4
Y 0.001F P 4
—_ Fo-- g
0.0001E 4
Sl Lol Ll Lol L

10° 0.0001 0.001 0.01 0.1

Al / ¢

FIG. 7. Effect of a perturbation to one central beam for a
particular frame optimized for f = 1.08 x 107% (n = 51). It is
expected that for At > 0 the failure loading will always be induced
by global deformation of the frame, whereas for At < 0, for small Az
global deflection will dominate while for larger Ar the local failure
mode will dominate.
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Defining
F
A=1-2 (57)
Fr
At
§=—, (58)

it can be seen that for optimized frame, independent of loading
for which the frame is optimized, for small &,

A=k &7, (59)

where the value of « = 0.5 & 0.02.

B. Generation 2
Here the effect of perturbing a single central beam in
a generation-2 frame is established. We again choose the
perturbed beam to be placed halfway up the generation-2 frame
with nodes at (—%, %) (assuming n is odd).

1. Deformation under loading

Under light loading, the generation-1 subframe that con-
tains the imperfection will deform from its initial straight con-
figuration into a triangular wave whose deflection is given by

2a;1x' / (n+1DLo
Ly1—Lao’ X € [0’ 2 ]
0 ’ ’ (n+1)Lro (n+3)Layo
Y2 (&) = qaxr, x e [T e
_ 2a 1 x’ / (n+3)L; o
2612!1 Loi+Lao’ X € [ 2 7L2,1]7

(60)

where x’ is related to the global coordinate system by
X = x4 L2t gng y;{] represents the lateral displacement
of the imperfect generation-1 frame relative to the initial,
straight, configuration. This is shown in the inset of Fig. 8.
The value of ay,; can be shown to be

g (L= Lao  Fou Fa oAt
> 2 Ky, ] 21000 + A1)’

It is straightforward to see that a displacement of the form
of Eq. (60) will cause a difference in the end-to-end length of
the imperfect frame and its perfect counterpart. This difference
is found to be

n+1 2
8Ly =m+1DLyo—2 ( 2 L2,0> _a%,1

F 2t 4 A
+ = <1 + .
k( )
2,0

KDyt ® + Ar)
The first two terms in Eq. (62) are due to the lateral
displacement of the imperfect frame, while the latter term is
due to the central square unit cell deforming into a trapezium
under loading. As shown in Fig. 8, a difference in end-to-end
length in the central generation-1 subframes will lead to a
global deflection in the generation-2 frame. For small values

(61)

(62)
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FIG. 8. Deformation for the early stages of loading for the
generation-2 frame. The perturbed beam is the simple beam
halfway up the enlarged generation-1 subframe on the left-hand side
(assuming At < 0).

of compressive load, the deflection will take the form

2a;,x (n+DLy,
Lyo—Lyy’ X e [O’ 2 ]
0= e e et
2apx (n+3)Ly
200 — 556 Y€ [5=21 Lo,
(63)
where
Ly —Lyy Fp\ 8Ly
wo=\—"7F"-—"7") 7 (64)
2 K, ) 2L,

As in the case of generation-1 imperfect beam this can be
written as a series

o 8axs i(—l)k sin [(2k + 1)%]
22 =" k+ 12

k=0

keZ. (65)

When the frame is loaded further the deflection will deviate
from the form given in Eq. (63); the evolution of this increased
displacement yzly2 will be governed by
d2y1

Yho— 35 = =Fas(33, + 310)- (66)
As with the generation-1 frame, an expression showing the
dependence of the displacement of the frame on the loading
parameter can be obtained; a series solution analogous to
Eq. (49) is found:

- Fyo\ 8az» 1 . mx
= - —— S1INn —_— [
2.2 FZC,Z 7'[2 1 — Fan L2,2

Fz,zC

— Ay, sin [ 2= (67)
= Az Sm L — e,

2,2
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In the vicinity of F, 5 &~ Fj , this expansion will be dominated
by the first term. It is noted that in this loading regime, the
generation-1 imperfect subframe will be deformed from its
initial straight configuration by

1+ F2,1 8a2,1 1 . x'm
= — —_— Sln —_ e .
2,1 cm,] 72 1— % L2,l
2,1
. X
= Aj sin <L_) — (68)

2. Effects of curvature

Here we investigate the effect of imposing a sinusoidal
deflection on the generation-2 structure. Under large loading,
the imperfect truss structure will take deformation of this form.
If the deflection is given by

y =asin <Z—x>, (69)

2,2

the truss will have a curvature induced. Using the approxima-
tion in Eq. (53), it is straightforward to show that the minimal
radius of curvature of the global deformation R; , is related to
a in Eq. (69) by

1 w%a

—_ =, (70)
Ryp L3,

The curvature in the truss will cause a difference in end-to-end
length in the generation-1 subtrusses at the center of the frame.
Denoting the difference in end-to-end length of the central
generation-1 subframes due to the curvature of the generation-
2 frame by 8Lg , and assuming that the whole generation-2
frame behaves as an Euler-Bernoulli beam, it can be shown that

®22Ry2 = Loy, (71)
L
Oa2 <R2,2 - %) =Ly, —8LS, (72)

will be satisfied for some value of ©®;,. Combining
Egs. (70)—(72) it is seen that

272
L5 ,a

2,2

(73)

3. Failure criteria

Due to the asymmetric imperfection in the truss structure,
there will be no critical point of Euler buckling in the imperfect
generation-2 frame or the imperfect generation-1 subframe.
Instead, in both, the deflection yg ; will increase as the critical
point of the perfect structure is approached. In this loading
regime, the deflection of the imperfect generation-1 subframe
and generation-2 frame will be given by Egs. (44) and (63),
respectively. As shown in Secs. II A 2 and II B 2, a deflection
of this form causes an increase in loading of the beams and
subframes on the inside of the curvature. The maximal value of
loading for a generation-1 frame in the imperfect generation-2
structure can be calculated as

F)i = Fy1 + k{|8LS . (74)
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where F,; is the force experienced by a vertical subframe
in the perfect structure and rSLgl is given by Eq. (73) with
a = A, ,. Through equating F{‘f’, with the Euler buckling load
of the generation-1 subtruss, as given by Eqgs. (1) and (11),
we can calculate the value of A, that will cause failure of a
generation-1 subframe; this is found to be

. 213, (nzYt(O)Lg’O ﬁ)

22~ 572 0 ~ 0
w3, \ 2k L3, ks

(75)

The maximal loading possible on a vertical component beam
in the structure can then be calculated as
FM
M= T +kSp8LS o, (76)

where §LS, is given by Eq. (54) with a = A;;. Again we
can calculate the maximal value of A, ; permissible before the
component beams fail as

¢ _ ZL%,I (7720(0))2 Fz,o)

= - 77
21 ﬂzL%,O 12L2,0 kz,o ( )

Then, through equating A,; as predicted in Eq. (68) by
replacing F» | = FzM1 with Aj | and equating A » as predicted
in Eq. (67) with Aj,, we ‘obtain the possible values of
loading that lead to failure of the generation-2 imperfect truss
structure. The values of loading that lead to these failures are
shown in Fig. 9. It is found that for the generation-2 truss
structure an imperfection, either strengthening or weakening
a single component beam, causes a reduction in failure load
for the whole structure. From Fig. 9 we see that the failure of
the individual component beams occurs before the subframe
failure for all values of loading. We see, however, that for
large negative values of imperfections local buckling of the

TR

— — Curvature-induced subframe failure
-+ Curvature-induced beam failure
0.1 — Component beam failure (At <0 )

Lo

N.\
QLLN 0.01? é
~ L _-- 4
LTT 0.001? - 3
0.0001

0.0001 0.001 0.01 0.1
AL| /¢

FIG. 9. Loading at failure for a particular imperfect generation-2
frame (n,, = n,,; = 101) against magnitude of imperfection. Shown
is a simple failure of the weakened beam (Ar < 0), the point at which
AS | is reached (labeled generation-0 bowing-induced failure), and
the point of loading at which Aj, is reached (labeled generation-
1 subframe failure). This particular plot is shown for Atz < 0; for
At > 0 the functional dependence remains the same, however the
generation-0 bowing-induced failure is translated a small amount
towards increased stability.

PHYSICAL REVIEW E 89, 023201 (2014)

component beams occurs before significant deformation of
the form (67) occurs. Using Egs. (57) and (58), we find that
for small perturbations

A= Kz’zfa, (78)
where o = 0.5 £ 0.05.

C. Simulations

It is noted that the expression relating the flexural rigidity
of the truss structure and the frame parameters in Eq. (11)
is not exact. This causes the local and global failure modes
to be noncoincident in the loading procedure, leading to
deviations from the behavior described above. In this section,
results of finite-element simulations are shown against the
theoretical predictions. The simulations are undertaken using
the spherical arclength method (see Refs. [21,22]). Without
exception, freely hinged joints are assumed at the nodes within
the structure. Only generation-1 structures are investigated
through simulation due to increased computational require-
ments for higher generations.

Equation (11) becomes more accurate in the limit of large
ny,;. When np; is relatively small, it is found that this
formula overestimates the stability against global buckling
when compared to the results of finite-element simulation. The
value of A‘l 1> as given in Eq. (56), is independent of F; ; and
thus Af | is not altered by any inaccuracy in Eq. (11). However,
the evolution of A; as predicted in Eq. (49) is changed
considerably by this inaccuracy. This is summarized in Fig. 10,
where the evolution of A ; found through simulation is shown
for a frame optimized such that n; ; = 51. The critical point
found by simulation is 0.59% less than that predicted by
Eq. (11). The evolution of A ; can, however, still be predicted
by Eq. (49) through substitution of the critical value of the

T A =t %10
A A =1x10
== A =1x10
S AL =1 %10

A =3t x107
o \Ar|:3tX10'3
— A =1 x107
O |Af=rx10" ||

4
4
-3
-3

T | | | | | | | | | | | | |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
1,1

FIG. 10. Agreement between analytic prediction and simulation
results for the evolution of the deformation in a frame with n = 51.
Here Fy, refers to that found through use of Eq. (11); the critical
point of the generation-1 frame is seen to be predicted to be greater
through use of this equation compared to finite-element simulations.
Plotted with lines are the analytic predictions for the evolution of
the coefficient of the first term in Eq. (49) with increasing load, with
symbols the results of simulation for the displacement of the central
point of the frame in the x direction.
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~ F T s 1
oo 001 Pk E
. E ]
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FIG. 11. Agreement between analytic predictions for the change
in failure loading against the results of finite-element simulations.
Also shown is the analytic result assuming Eq. (11) is exact. The top
plot shows the results for n; ; = 51 and the bottom the results for
ny,; = 143; for greater values of n; ; it is seen the half power law has
an increased range of validity.

frame found through simulation in place of Fy, in Eq. (49);
this is shown in Fig. 10, for various values of imperfection
magnitude.

The power law relating imperfection to reduction in failure
load can be tested through simulation. As above, the inaccuracy

PHYSICAL REVIEW E 89, 023201 (2014)

in Eq. (11) must be taken into account. Through substitution
of the critical point found through simulation in place of
F{, in Eq. (49) and subsequently equating the coefficient
of the first term with Eq. (56), the failure load of a given
frame with a given imperfection can be predicted; this can
then be tested against simulation. The results of both the
corrected theory and simulation are shown in the top plot
of Fig. 11 alongside those predictions that are valid for the
perfect optimization for a frame optimized for loading of
f =2.87 x 1073 (n;,; =51). Good agreement between theory
and simulation for both signs of At is observed. The bottom
plot of Fig. 11 shows the predictions made by analytic work and
the results of finite-element simulations for a frame optimized
such thatn; | = 143 (f = 2.04 x 10~%); in particular one can
see that, as a result of the increasing accuracy of Eq. (11), the
half power law has an increased range of validity.

III. DISCUSSION

It has been shown that the principle of hierarchical design
can be applied to a structure in two dimensions. As in three
dimensions, increasing the hierarchical order of the structure
can be seen to result in higher efficiency in the limit of
low loading. The effect of a perturbation to a single central
beam in the structure has been obtained theoretically for
generations 1 and 2. It was found that the behavior of the
generation-1 subframe dominates the effect of the imperfection
in the generation-2 frame. This behavior is expected to
apply to three-dimensional frames that display imperfection-
insensitive behavior at the critical point of loading. In both
generations 1 and 2 of the two-dimensional frame, a half
power law relating imperfection magnitude to reduction in
loading at failure was found. It was found that any asymmetric
perturbation in the frame, be it strengthening or weakening the
perturbed beam, results in a reduction in loading at failure.
The results of analytic work in the case of generation-1
frames were confirmed through finite-element work. The effect
of inaccuracies in the optimization procedure has also been
discussed. Higher-generation frames are likely to exhibit the
same behavior as discussed here. The one-half power law
relating imperfection magnitude with reduction in failure load
is expected to hold for general G. Modal interactions and
distributions of imperfections remain as open topics for future
work.
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