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The quest for a quantitative characterization of community and modular structure of complex networks
produced a variety of methods and algorithms to classify different networks. However, it is not clear if such
methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of
the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In
this work we give a contribution by introducing the hierarchical mutual information, which is a generalization
of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical
community structures. The normalized version of the hierarchical mutual information should behave analogously
to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information
is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial
hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the
experiments illustrate some of the practical applications of the hierarchical mutual information, namely the
comparison of different community detection methods and the study of the consistency, robustness, and temporal
evolution of the hierarchical modular structure of networks.
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I. INTRODUCTION

Many complex systems exhibit some degree of organiza-
tion at different physical scales. Often, the organization is
hierarchical. There exist examples of this fact in variegated
fields, like biological, social, and technological systems.
Among the former, and starting from complex molecules
(such as lipids, proteins, RNA or DNA) while increasing
the scale of observation, new levels of organization are
found: organelles, cells, tissues, organs, anatomical systems,
organisms, populations, and ecosystems. In the social context,
human societies organize from the level of individuals, groups,
cities, up to the global scale of countries or continents. Finally,
among technological systems, computer networks are also
arranged at different scales from the local network level up to
the domain level routing systems that constitute the backbone
of the Internet. Hierarchical organizations seem ubiquitous in
complex systems and, despite the early interest of the scientific
community about the subject [1–3], it is far from being fully
understood. The description of hierarchical organization of
complex systems remains, to a great extent, at the semantic
level. This is mainly because the following difficulties: the
existence of several relevant physical scales, the existence
of a variety of organizing principles, the large number of
components, and the lack of a general enough and well-defined
formal theory for the identification of hierarchies.

The study of complex networks [4–7] plays a central
role in the characterization of the organization of complex
systems. In essence, networks are used to represent the
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structure of the interactions between the components of
the system under consideration. Therefore, it is reasonable
to assume that some complex networks have hierarchically
organized topologies, reflecting the underlying hierarchical
organization of the associated complex systems. A natural
way of thinking about hierarchical network topologies is that
of hierarchical community structures, i.e., communities within
communities of nodes [8–10]. Typically, the identification of
the communities of a network is computationally intensive
and a statistically difficult problem [11]. Although a large
number of community detection methods have been developed
already [12–17]—including methods for the identification
of hierarchical community structures [8,9,17–25]—not all
methods provide comparable results. This is true especially
for hierarchical community structures. Therefore, similarity
measures for the comparison of hierarchical community
structures are of crucial importance. The aim of this paper is
to introduce an information-theoretic tool which can be used
to compare hierarchies, or trees, which might be composed of
network communities. We further show that this tool can be
employed to trace the evolution of hierarchies when temporal
networks are analyzed.

A standard way to quantify the similarity of two community
structures is to compute the mutual information between the
associated node partitions [26,27]. Extending the idea, the
present paper introduces a hierarchical mutual information,
generalizing the traditional mutual information to work with
hierarchical partitions. In principle, there might be different
ways in which the mutual information can be generalized
into a hierarchical mutual information. In this work, hi-
erarchies are considered to be of divisive nature; i.e., the
whole is divided into parts, each of which is subdivided
into subparts, an so on, following a top-down approach. As
a consequence, in this context hierarchies are represented
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by trees with branches of varying length. Other possible
generalization approaches might exist. For example, general-
izations that consider agglomerative hierarchies—i.e., bottom-
up approaches—or overlapping communities. Alternatively,
related methods exists for the comparison of phylogenetic
trees [28–30]. Recently, a method to compare hierarchies
was introduced; the method follows a combinatorial approach
[31]. However, to the best of our knowledge, no previous
method based on information-theoretic measures exists for
the comparison of hierarchies. These alternative methods and
the previously mentioned generalization approaches are not
discussed further in this paper, but can be considered in future
works.

The outline of the paper is the following. In Sec. II the
hierarchical mutual information is motivated and introduced.
In Sec. III this measure is tested on different synthetic setups.
More specifically, in Sec. III A the behavior of the hierarchical
mutual information is tested in artificial hierarchies, while
in Sec. III B the hierarchical mutual information is used to
analyze the hierarchical community structure of artificial net-
works, or network models. A similar procedure is performed
on empirical networks in Sec. III C, including the case of
a temporal one. Finally, the discussion and conclusions are
summarized in Sec. IV.

II. THEORY

A. Hierarchical partitions

A hierarchical partition is a generalization of the traditional
concept of partition. Here each element of the partition can be
recursively partitioned into others, yielding a hierarchy. The
formal definition is as follows. Consider a set of elements,
or universe, denoted by �. An element in � is denoted by
i. The set � splits into a hierarchy of subsets, denoted by v.
The number of elements in the subset v is written as |v|. The
hierarchical partition, or simply hierarchy, is represented by a
tree denoted by T . The root v� ∈ T is the “oldest ancestor” of
the various vertices, or descendants in the tree T . As a subset,
the root contains the whole set of elements; i.e., v� ≡ �. For
any subset v ∈ T , �T

v denotes the set of direct descendants of
v. A subset v is at the lth level (or depth) of the hierarchy if
l is the topological distance from v to v�. When there is no
confusion, we simplify the notation to �v , i.e., by omitting the
reference to T .

Consider a network of nodes i and links (weighted or not)
wii ′ . Here the terms elements and nodes are used interchange-
ably, both referring to the entities denoted by i. Traditionally,
the community structure of a network is represented by a
node partition. In many cases, these communities present
a hierarchical organization. In particular, if the hierarchy
is constituted by subcommunities within communities, then
the structure can be mapped to a hierarchical partition T .
Depending on the context, T is referred to as a tree, as a
hierarchical community structure, or simply as a hierarchy;
i.e., the terms are used interchangeably. Each subset v ∈ T
corresponds to one and only one subcommunity of the network
hierarchical community structure [see Fig. 1(a)]. The root v�

represents the set of all nodes in the network. The children
u ∈ �v correspond to a partition of the subcommunity v

(a)

(b) (c)

FIG. 1. (Color online) (a) Illustration of how a hierarchy of
communities obtained from a Sierpinski network wii′ corresponds
to a hierarchical partition, or tree T . The root v� ∈ T contains all
the nodes of the network wii′ , and v represents a subcommunity level
l = 1. In (b) and (c), two simple hierarchical partitions, or trees, of the
same set of nodes {a,b,c,d,e,f,g} are presented. On the tree T ,
the node a is separated from the other nodes {b,c} at the level
l = 2, while on the tree T ′ the separation occurs at level l = 1.
This difference implies a normalized hierarchical mutual information
smaller than 1, even if the partition at the bottom of both trees is the
same.

into subcommunities u. The leaves of T are the smallest
subcommunities of the network. Finally, each subcommunity
v ∈ T has an associated subnetwork with links w

(v)
ii ′ between

the pair of nodes i,i ′ ∈ v.

B. Uncertainty reduction

In this section, the definition of the hierarchical mutual
information is motivated. Only Shannon-based information
measures are used throughout the rest of the paper [32].

Consider how the uncertainty about the identification of
a specific node i is reduced when going down a tree T . As
the root v� ∈ T represents the set of all nodes, to look for a
specific node i requires checking ∼=log2 |v�| binary choices. In
other words, the uncertainty is reduced by ln|v�| nats when a
node i is unequivocally identified (a nat is a unit of information
equals to 1/ln2 ≈ 1.44 bits) and there is no uncertainty left.
Sometimes the information pointing towards a specific node
is not precise, and the uncertainty reduction is not complete.
For example, if node i is specified to be in the subcommunity
v, the uncertainty reduction is ln|v�| − ln|v| = −ln(|v|/|v�|)
nats, and ln|v| nats of uncertainty still remains.

Traversing a hierarchy along descendants is similar to a
sequential reduction of uncertainty. More specifically, it is
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possible to write

− ln1/|v�| = −ln|v1|/|v�| − ln|v2|/|v1| − · · ·
−ln|vl|/|vl−1| − ln|vl+1|/|vl| · · ·
−ln|vLi

|/|vLi−1| − ln1/|vLi
|, (1)

where Li is the deepest level at which node i can be found. Each
term −ln|vl|/|vl−1| can be considered a conditional uncertainty
reduction, specifically, how much the uncertainty is reduced
when new information is gained (that i ∈ vl), given that some
other information was already available (that i ∈ vl−1).

It is possible to average over nodes i using an appropriate
weighted version of the expression in Eq. (1). More specif-
ically, the average uncertainty reduction along the tree T is
defined as

〈HT 〉 =
∑

v1∈�v�

− |v1|
|v�| ln

|v1|
|v�| + · · ·

+
∑

vl∈�vl−1

− |vl|
|vl−1| ln

|vl|
|vl−1| + · · ·

+
∑
i∈vL

− 1

|vL| ln
1

|vL| , (2)

where, for simplicity, we wrote the equation for the particular
case in which all branches of the tree T have the same length,
i.e. Li = L for all i ∈ �. The general case is introduced later
in Sec. II C. In Eq. (2), every reduction step is weighted by the
fraction of nodes that is found by following the corresponding
branch of the tree T . Using similar ideas, the hierarchical
mutual information is defined in the next section.

C. The hierarchical mutual information

In community detection problems, it is customary to quan-
tify the similarity between two inferred community structures
using the mutual information between the corresponding
node partitions [11,15,26]. Here the goal is to introduce
the hierarchical mutual information to quantify the similarity
between two hierarchical partitions, or trees, associated with
corresponding hierarchical community structures.

Consider two trees, T and T ′, and two subcommunities,
v ∈ T and v′ ∈ T ′, both at the same topological distance, or
level l, from the roots of their corresponding trees. It is not
necessary for the trees T and T ′ or the subcommunities v and
v′ to contain the same elements. Let Tv represent the subtree
of root v obtained from T . The analogous holds for T ′

v′ . The
hierarchical mutual information between the subtrees Tv and
T ′

v′ is denoted by I (Tv; T ′
v′ ). By definition, it is assumed that

I (Tv; T ′
v′ ) = 0 if either v or v′ is a leaf of the corresponding

tree. Otherwise, I (Tv; T ′
v′ ) is recursively defined by the

formula

I (Tv; T ′
v′) := I (�v; �v′ |v ∩ v′) +

∑
u∈�v ,u′∈�

v′
|v∩v′ |�=0

|u ∩ u′|
|v ∩ v′| I (Tu; T ′

u′).

(3)

In Eq. (3), the first term of the right-hand side is called the
one-step mutual information and is defined as

I (�v; �v′ |v ∩ v′) := H (�v|v ∩ v′) + H (�v′ |v ∩ v′)

−H (�v ∩ �v′ |v ∩ v′), (4)

where H (·) represents the Shannon entropy. These terms are
computed as

H (�v|v ∩ v′) :=
{∑

u∈�v
−|u∩v′|

|v∩v′| ln
|u∩v′|
|v∩v′| if |v ∩ v′| �= 0,

0 otherwise,

(5)

and

H (�v ∩ �v′ |v ∩ v′)

:=
{∑

u∈�v

u′∈�v′
− |u∩u′|

|v∩v′| ln
|u∩u′|
|v∩v′| if |v ∩ v′| �= 0,

0 otherwise.
(6)

In all cases, the convention 0ln0 = 0 is adopted. Finally, the
hierarchical mutual information of two full trees T and T ′ is
denoted and defined by

I (T ; T ′) := I
(
Tv�

; T ′
v′

�

)
, (7)

where v� and v′
� are the roots of T and T ′, respectively.

Each term involved in I (T ; T ′) is non-negative, and thus,
the hierarchical mutual information is a non-negative quantity.
Also, I (T ; T ′) = I (T ′; T ); i.e., it is a symmetric function of
its arguments. When the trees T and T ′ are just stars, i.e., a root
plus one generation of descendants, it is possible to think of
them as standard partitions. In this case, the hierarchical mutual
information reduces to the standard mutual information.

Note that the hierarchical mutual information is not a
measure of the similarity between the corresponding final
partitions of the nodes at the leaves of the trees (except when
both trees are stars). Rather it is a summation of weighted local
one-step contributions, measuring how similar the partitions
are at each corresponding point in both trees. For example, if
two nodes i and i ′ are separated at level l in tree T and at level
l′ �= l in tree T ′, then the separation of i and i ′ contributes with
zero to the value of the hierarchical mutual information.

For practical purposes, a normalized hierarchical mutual
information is defined as

i(T ; T ′) = I (T ; T ′)√
I (T ; T )I (T ′; T ′)

. (8)

We would like the reader to note that there exists more than one
way to normalize the mutual information. Here we work with
one that takes inspiration from the Cauchy-Schwarz inequality,
but future experiments may prove other normalization methods
to be more convenient depending on the particular context
in which the hierarchical mutual information is used. The
value of i(T ; T ′) lays in the interval [0,1] and attains the
maximum 1 if and only if T = T ′, as indicated by the results
of extensive numerical exploration reported in the following
sections. However, formal proofs of the previous statements,
and the following ones, are still missing. More specifically, it
remains to be proved that (i) I (T ; T ′) � I (T ; T ) for all T and
T ′ and (ii) the equality holds if and only if T = T ′. These
statements imply the previous ones and constitute desirable

062825-3



PEROTTI, TESSONE, AND CALDARELLI PHYSICAL REVIEW E 92, 062825 (2015)

properties for a well-defined measure of mutual information
to have.

To help better understand the hierarchical mutual informa-
tion, a simple example is worked out explicitly. Consider the
set of nodes {a,b,c,d,e,f }, and the two hierarchical partitions
T = {{{a},{b,c}},{d,e,f }} and T ′ = {{a},{b,c},{d,e,f }} [see
Figs. 1(b) and 1(c)]. Here v� = v′

� = {a,b,c,d,e,f }. Also,
�v�

= {{a,b,c},{d,e,f }} and �v′
�

= {{a},{b,c},{d,e,f }}. In
the tree T , there is an intermediate subcommunity {a,b,c}
which is not on the other tree T ′. As a consequence, the
one-step mutual information at level l = 1 [see Eq. (4)] is
I (�v�

; �v′
�
|{a,b,c,d,e,f }) ∼= 0.693 [see Eq. (4)]. All other

terms corresponding to levels l > 1 contribute with zero
because they involve leaves. This is because the tree T ′ is just a
star which has only one level. Adding all together, I (T ; T ′) ∼=
0.693. On the other hand, the self-hierarchical mutual infor-
mation consists of I (T ; T ) ∼= 1.011 and I (T ′; T ′) ∼= 1.011.
Therefore, the normalized hierarchical mutual information
yields i(T ; T ′) ∼= 0.685, a value smaller than 1. In other words,
these trees share only a fraction of the information they contain.
This holds despite that the partitions at the bottom are the same
for both trees.

To facilitate future research, collaboration, and scientific
reproducibility, we provide the PYTHON [33] code implement-
ing the hierarchical partition data structure and the hierarchical
mutual information function as an open-source package [34].
The example of Figs. 1(b) and 1(c) is provided in the PYTHON

package.

III. RESULTS

A. Testing the hierarchical mutual information
in artificial hierarchies

Before focusing on the hierarchical community structures
of networks, we analyze the behavior of the hierarchical mutual
information when used to compare artificially generated hier-
archical partitions, more specifically, hierarchies composed of
binary trees T containing N = 2L elements i, L levels, and
2L+1 − 1 subcommunities including the root. Each tree has one
element i per subcommunity at the bottom level l = L, two
elements per subcommunity at the previous level l = L − 1,
and so on, until it has N elements at the root.

In the experiments, the original trees are compared against
correspondingly randomized ones. The idea is to show how
the normalized hierarchical mutual information decays with
respect to the level of randomization. Two different random-
ization procedures are used.

In the first randomization procedure, pairs of elements are
randomly chosen from the tree and consecutively swapped
until a fraction f of them is affected. This is called the basic
randomization procedure. In Fig. 2, the average normalized
hierarchical mutual information 〈iL〉 is plotted vs the fraction
f of randomized elements. The average is computed over 100
repetitions of the randomization procedure for each value of f

and L. Notice that 〈iL〉 decays approximately in an exponential
way with respect to f ; further, it is almost independent of
L except for large values of f , where finite size effects
become important. In particular, when the hierarchy is fully
randomized, i.e., f = 1, the 〈iL〉 is nonzero. Although a priori

10−2

10−1

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i L

f

L = 5
L = 6
L = 7
L = 8
L = 9

L = 10

FIG. 2. (Color online) The normalized hierarchical mutual in-
formation, 〈iL〉, comparing hierarchical partitions represented by
binary trees with L levels, and corresponding randomized partitions
with a fraction f of the elements shuffled at random. The average
is computed over 100 realizations of the shuffling procedure, and
the different curves correspond to trees with different number of
levels L. The black dashed line corresponds to an exponential fit,
〈iL〉 = exp(−f/f0), with f0 = 0.490 ± 0.004 and R2 = 0.968, for
the case L = 10. Error bars and standard-deviation bars are not plotted
for clarity.

this may be attributed to an error, it is indeed an expected
result for finite size hierarchies: Random coincidences produce
a nonzero amount of shared information. A similar result is
known to hold for the traditional mutual information [27].

In the second procedure, the elements are also shuffled
by swapping pairs chosen at random. However, a given
pair is swapped only if both elements belong to the same
subcommunity at depth l. In other words, the randomization
procedure preserves the classification of the elements at the
levels 0,1, . . . ,l − 1, while in the subsequent levels l,l +
1, . . . ,L, the original classification is destroyed. Again, the
swapping procedure runs until a fraction f of the elements is
affected. This second procedure is called the level-preserving
randomization procedure. In Fig. 3, the average normalized
hierarchical mutual information 〈il〉 is plotted as a function
of f for the level-preserving randomization procedure. Here
experiments are repeated for different values of l and fixed
L = 7. Averages are computed as was done with the basic
randomization procedure. In line with the previous result of
Fig. 2, 〈il〉 also decreases with f following approximately an
exponential decay. Now the greater is the shuffling level l, the
slower is the decay. In particular, for l = 6 no decay at all is
observed, i.e., 〈il〉 = 1 for all f . This is expected because trees
have L = 7 levels and only one element per subcommunity at
the bottom level, which do not contribute to the hierarchical
mutual information.

B. Comparing community detection algorithms
on artificial networks

1. Community detection methods

One of the interesting applications of the normalized
hierarchical mutual information is comparing the results
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FIG. 3. (Color online) The normalized hierarchical mutual infor-
mation comparing hierarchical partitions represented by binary trees
with L = 7 levels and corresponding randomized partitions where a
fraction f of the elements are randomly shuffled. The randomization
procedure preserves the element classification of levels 0,1, . . . ,l − 1,
but affects the rest of the levels (different curves with symbols). The
dashed line is the best fit of an exponential decay 〈il〉 = exp(−f/f0),
with f0 = 0.478 ± 0.008 and R2 = 0.978, for l = 0. For clarity, error
bars and standard-deviation bars are not shown.

yielded by different community detection methods. In this
paper, three community detection methods are compared:
Infomap [8], which finds a hierarchy of communities through
the minimization of the description length of the path traversed
by a random walker; the hierarchical stochastic block model
(HSBM) method [9], which fits a hierarchy of stochastic block
models to the network topology; a recursive Louvain (RL)
method, which recursively splits the network into a hierarchy
of network modules using, at each step, the well-known
Louvain community detection algorithm [35]. In what follows,
the relevant aspects of the different methods are considered in
more detail.

Infomap returns hierarchies that are consistent with a
divisive algorithm, i.e., the branches of the corresponding trees
may have different depths. The algorithm itself uses both ap-
proaches, repeatedly. Communities are split and merged until
a minimum description length is attained. In the hierarchies
obtained by this method, the leaves have one and only one
node. For the sake of comparison with the other methods,
these communities of size equal to one are ignored, except if
same level communities of size larger than one exists.

At difference with Infomap, the HSBM merges nodes
to generate supernodes or communities, which are further
merged to obtain the communities at the contiguous higher
level, and so on. As a consequence, all the branches of the
returned trees have the same depth. Moreover, the HSBM
may return trees containing subcommunities with descendants
but no further subdivisions, i.e., subcommunities with only
one child. Although the hierarchies produced by the HSBM
can be compared using the hierarchical mutual information—
as they are hierarchical partitions—the comparison is not
fully appropriate. This is because the hierarchical mutual
information is based on a divisive approach, while the HSBM
is based on an agglomerative approach. The experiments

involving the HSBM show how important is the difference
between both kind of approaches.

The recursive application of the Louvain method is a
mixed agglomerative-divisive algorithm. The standard Lou-
vain method is an agglomerative algorithm; a community
structure is obtained by merging modules until the modularity
[36] of the partition, denoted by Q, reaches a maximum value
[35]. On the other hand, the recursive use of the Louvain
presented here, is a divisive method. More specifically, given
a network wii ′ (defining the level l = 0), a standard Louvain
method is applied to obtain a partition into subcommunities v

at level l = 1. Then the Louvain is applied again on each sub-
community, to split each subnetwork w

(v)
ii ′ into subcommunities

at level l = 2, and so on. In this way, a tree T is generated.
The division of a particular subcommunity stops when the
standard Louvain returns a modularity Q � 0. Importantly,
the Louvain method is not deterministic, leading to stochastic
differences from run to run. Two important points have to
be stressed. First, the use of the Louvain is circumstantial;
any other modularity maximization procedure would produce
similar results. Second, the idea of a recursive application of a
modularity-based community detection algorithm is not new,
and more elaborate algorithms do exist [10,17,37]. However,
here RL is chosen for its simplicity. Our main goals are to
show how the hierarchical mutual information behaves and to
illustrate how it can be used, without aiming to find the best
community detection method.

2. Artificial hierarchical networks

In order to analyze the performance of the different
community detection methods, in this section they are run on
specific networks. Here two well-known benchmark network
models are used to generate the networks necessary for the
experiments. In principle, these network models are able
to generate network samples with underlying hierarchical
community structures. Clearly, the specific characteristics
of the generated networks depend on the parameter values
chosen.

The first network model is the hierarchical planted partition
(HPM) model [21], a generalization of the planted partition
model [38], where the network obtained is hierarchically
arranged. In this model, N nodes are connected according
to a hierarchical structure of L levels and a branching factor
B. For practical purposes, we chose N = 512 nodes, L = 3
levels, and a branching factor B = 4 (see Fig. 4). At the root
level, l = 0, all nodes belong to the same community. At
level l = 1, there exist B = 4 communities with 128 nodes
each. Consecutively, at the final level l = 2, there are B2 = 16
communities, with 32 nodes each. Each node has an average of
Kl links to nodes exclusively within the communityto which
they belong at level l, i.e., K2, K1, K0 to other nodes in the
same communities at levels 2, 1, 0, respectively. Therefore, the
total average degree of the nodes is 〈k〉 = K0 + K1 + K2. In
principle, networks sampled from the HPM have the expected
hierarchical community structure whenever K0 < K1 < K2

[21].
The second network model consists of Sierpinski networks

with L levels. Figure 1(a) illustrates a Sierpinski network
with L = 3. These networks have a natural self-similar and
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FIG. 4. (Color online) A sample network obtained from the hier-
archical planted network model (HPM), for K0 = 0.25, K1 = 2, and
K2 = 8. The network contains N = 512 nodes, 4 big communities of
128 nodes each, and 16 small communities of 32 nodes. The darkest
links connect pairs of nodes sharing the same small community at
level l = 2; the links of intermediate brightness connect nodes sharing
intermediate communities at level l = 1, but not sharing the same
small communities. Finally, the brightest links connect pairs of nodes
at level l = 0, but not nodes sharing communities at levels l = 1 and
l = 2.

hierarchical modular structure. A Sierpinski network with a
single level is just a clique with 3 nodes, i.e., a triangle.
A network of this type with L + 1 levels is obtained by
by replacing each node of a Sierpinski network with L

levels by a clique of size 3. It is worth pointing out that a
Sierpinski network with L levels has N (L) = 3L ∼ eL nodes,
M(L) = 3[M(L − 1) + 1] ∼ eL links, and its average degree
〈k〉 → 3 when L → ∞. To make the analysis more interesting,
a fraction f of the links in the Sierpinski networks are
randomly rewired. The rewiring procedure is well known [39].
Essentially, successive pairs of links, each of which is chosen
at random, swap the nodes at their extremes until a fraction
f of the links is affected. In this way, there is a well-defined
hierarchy of communities for f = 0, which is progressively
blurred out as f increases.

In the following sections, the different community detection
methods and these two network models are combined into a
set of experiments analyzed using the normalized hierarchical
mutual information.

3. Hierarchical fidelity

Each network model has an associated natural or reference
hierarchy, denoted as T ∗. Specifically, the reference hierarchy
for the Sierpinski and HPM models are shown in Figs. 1(a) and
4, respectively. The hierarchies identified by the community
detection methods are not necessarily equal to the reference
ones, and in some cases, they do not even resemble it.
The degree of fidelity of the community detection method
measures how similar are the identified communities to
the reference ones. Formally, given a community detection
method, a network sample wii ′ and a reference hierarchy

T ∗, the hierarchical fidelity—or simply, fidelity—of the
community method is defined as the average normalized
hierarchical mutual information, 〈i(T ∗; T )〉. The average is
computed summing over an ensemble of hierarchies {T },
obtained by repeatedly identifying the hierarchical community
structure of the network wii ′ , using the chosen community
detection method. In the results shown, the ensemble {T }
was composed by 100 hierarchies. Furthermore, the fidelity
is averaged by sampling 100 networks from each network
model. The procedure is repeated for different values of the
network models parameters and using the different community
detection methods.

For the case of the HPM, two different model reparametriza-
tions are used. In one case the whole network structure changes
simultaneously, while in the other case, only one level is
affected [21]. More specifically, in case 1 all parameters K0 =
7.75μ + 2, and K1 = 6μ + 2 are linearly reparametrized by
μ ∈ [0,1], while K2 is kept constant. In case 2, the parameters
K0 = K2 = 8 are kept constant, while K1 = 8μ + 4 changes
linearly with μ. For the case of the Sierpinski network model,
the parameter is the fraction of randomized links, f , as
mentioned in Sec. III B 2. In what follows the results are
presented and commented.

First, the results of the fidelity for Infomap are shown in
Fig. 5(a). In the HPM, case 1, Infomap detects the reference
hierarchy almost always for μ = 0, and the fidelity is ≈1. On
the other extreme, at μ = 1, Infomap typically finds a one-level
hierarchy composed of four communities with 128 nodes. The
four communities are the right ones at the level l = 1, and the
fidelity decays to ≈1/

√
2 ∼= 0.707. The decay in the fidelity

is expected because all Kl converge to the same value Kl = 8
when μ → 1, making the generated network hierarchies less
defined. In case 2, the same scenario occurs for μ � 1/2; i.e.,
the same four communities are identified. On the other hand,
for small μ, the structure of the network is dominated by
links at levels 0 and 2. As a consequence, and depending on
the particular network realization, Infomap finds a one-level
hierarchy with either 1 or ≈16 communities, resulting in a
small fidelity value. For the Sierpinski networks, the behavior
can be more easily interpreted. For small f , Infomap finds an
approximately accurate representation of the exact hierarchy
of communities. However, as f grows, the hierarchy is quickly
blurred out and the fidelity decays accordingly.

The findings of the fidelity for the HSBM method are shown
in Fig. 5(b). For the HPM, the fidelity is almost a constant
function of μ for cases 1 and 2. A closer inspection reveals
that, typically, the HSBM method splits the network samples
into two communities at level l = 1, which are then further
subdivided, giving rise to a hierarchy with three levels. Inter-
estingly, the identified hierarchies are similar, regardless of the
value of K1. Therefore, the resulting fidelity is relatively small
because the identified hierarchies are significantly different for
the reference one. In essence, the two communities identified
at level l = 1 mean a significant difference with respect to
the expected value of 4. For the case of the Sierpinski model,
the HSBM typically detects only one community, except for
vanishing f and L = 5, where the network splits into two big
ones. For this second model, the fidelity is also generally small.
In our view, this occurs because of two characteristics of the
HSBM. On the one hand, the HSBM follows a conservative
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FIG. 5. (Color online) The fidelity compares the hierarchical community structure of the networks generated with the models against
corresponding reference hierarchies. The topology of the generated networks changes as a function of the parameter, μ ∈ [0,1]. For the
HPM, case 1, μ parameterizes the network model according to K0(μ) = 7.75μ + 0.25, K1(μ) = 6μ + 2, and K2 = 8. Similarly, in case 2,
K0 = K2 = 8 and K1(μ) = 8μ + 4. For the Sierpinski model, f ∈ [0,1] is the fraction of rewired links and L is the number of network levels.
Each panel corresponds to one of the community detection methods discussed in the text: (a) Infomap, (b) HSBM, and (c) RL. In all cases, the
bars represent standard deviations around the mean.

approach; no divisions are introduced until there is enough
statistical evidence to justify them in terms of a hierarchy of
stochastic block models. On the other hand, the HSBM follows
a bottom-up approach—the elements in � are iteratively
merged into modules, supermodules, and so on, generating a
tree T with all branches of the same topological length—while
the hierarchical mutual information is more appropriate to
compare top-down hierarchies (see Sec. I). In this sense, the
comparison of the other methods with the HSBM by means
of the hierarchical mutual information highlights the crucial
difference between top-down and bottom-up approaches.

Third, the fidelity is computed for the RL method, and
the corresponding results are shown in Fig. 5(c). For the
HPM, the fidelity is not a monotonic function of μ, instead it
displays a maximum at an intermediate value of μ. In general,
this method tends to find the right communities at the first
level l = 1. However, the random fluctuations of the network
samples become meaningful information for RL, and therefore
it tends to split the networks into more communities than that
originally found in the reference hierarchy. As a consequence,
the normalized hierarchical mutual information yields values
smaller than 1. However, because the information shared at
level l = 1 is nontrivial and fairly accurate, the normalized
hierarchical mutual information is far from being negligible.
On the other hand, for the case of the Sierpinski network
model, RL has a poor performance. In essence, this method

finds significantly more communities than expected, even at
level l = 1, resulting in small fidelity values for all f .

4. Hierarchical consistency

In the previous section it was shown that each community
detection method returns hierarchies different from the ex-
pected ones; therefore, some questions arise. How mutually
consistent are the returned hierarchies? Do these hierarchies
represent noise or represent a specific detected bias? The
following set of experiments addresses these questions. More
specifically, the idea is to analyze how mutually similar or
consistent are the communities detected by the methods.
Formally, the hierarchical consistency—or just, consistency—
of a method is defined as the average normalized hierarchical
mutual information 〈i(T ; T ′)〉, where the average is computed
over an ensemble of pairs of hierarchies {(T ,T ′)}. The hier-
archies in the pairs are randomly chosen, without repetition,
from the ensembles of hierarchies generated in the previous
experiments about the fidelity. The procedure is repeated for
each network sample in order to average the consistency. The
whole procedure is repeated for the different network models
and corresponding parameters.

In Fig. 6(a), the consistency is analyzed when the hierarchi-
cal communities are detected by using Infomap. For the HPM,
case 1 (see Sec. III B 2), the consistency is ≈1 for all values
of μ. In other words, in this initial setting, Infomap provides
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(a) Infomap
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(b) HSBM
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FIG. 6. (Color online) The consistency measures how similar are the different hierarchies obtained from a given community detection
method with respect to each other in a specific network sample. The computations are repeated for several network samples, for each network
model, and different values of the parameters μ and f . See Fig. 5 for specific details of the simulation parameters. The panels (a)–(c) correspond,
respectively, to the different community detection methods: Infomap, HSBM, and RL. In all cases, the bars represent standard deviations around
the mean.
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(a) Infomap vs HSBM
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(b) Infomap vs RL
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(c) HSBM vs RL
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FIG. 7. (Color online) The similarity compares how similar are the hierarchies obtained by two different community detection methods
methods. Here we compare (a) Infomap vs HSBM, (b) Infomap vs RL, and (c) HSBM vs RL. The hierarchical community structures used to
compute the similarities are the same as those used in Fig. 5. Results are shown as a function of the parameters μ and f of the corresponding
network models. In all cases, the bars represent standard deviations around the mean.

very consistent results always. For case 2, the fidelity is also
close to 1 when μ is large; however, the consistency becomes
small for small μ. This is expected, as it was already mentioned
Infomap’s detection is largely bimodal: Either it finds 1 or ≈16
communities depending on the network sample, and these two
cases are very inconsistent with each other. For the Sierpinski
networks, the consistency is large when f ≈ 0 and decays to a
nonzero value for larger values of f . In other words, network
randomization becomes important for large f , but still, part
of the information captured by Infomap is already contained
even in this case.

The results of the consistency for the HSBM are shown in
Fig. 6(b). For the HPM, the observed consistency is large in
cases 1 and 2, despite the small fidelity with respect to the
natural hierarchies shown in Fig. 5(b). This means that the
HSBM returns hierarchies similar to each other, but signifi-
cantly different from the reference one. More specifically, the
returned hierarchies share similarities at level l = 1, but at
the following levels the differences become important, except
for case 1 at μ = 0, where the consistency remains ≈1. For
the Sierpinski network model, the consistency is negligible in
most of the range of f . This is expected because a flat hierarchy
conveys no information, and the HSBM typically returns trivial
hierarchies for the Sierpinski networks, i.e., hierarchies with
only one community, the root one. Only for small values of
f , for the case L = 5, the consistency is nonzero, but still
with small values. Here only two communities are identified,
agreeing only over a small fraction of the nodes.

The consistency for the RL method is shown in Fig. 6(c). For
the HPM, the curves look similar to the ones corresponding to
the fidelities in Fig. 5(c). In essence, the computed hierarchies
are very similar to each other and to the reference hierarchy.
For the Sierpinski network model, the consistency can be large,
even if the fidelity is small. This means that the detected
structure is invariably the same, although different from the
reference one.

5. Hierarchical similarity

It is clear that the different community detection methods
return different results. However, it remains to analyze how
similar are the results of one detection method with respect
to one another. To address this point, the hierarchical simi-
larity between two community detection methods is defined
as the average normalized hierarchical mutual information,
〈i(T1; T2)〉. In shorthand, we speak about the similarity, and
the average is computed over pairs of trees, where the trees
T1 are computed with one of the methods, while the trees T2

with the other method. Both set of trees are computed from
the same network sample. Later the similarity is averaged
by sampling networks from the different network models.
The procedure is repeated for each set of chosen values of
the corresponding model parameters. In practice, the network
samples and corresponding sampled trees used to compute the
fidelities are the ones used to compute the similarities (see
Figs. 5 and 6).

(a) (b) (c)

FIG. 8. (Color online) Hierarchical partition samples, or trees T , computed from the power-grid empirical network using: (a) Infomap
(left), (b) the HSBM method (middle), and (c) RL (right). The trees contain 1099, 40, and 2879 subcommunities, respectively. The size of the
subcommunities are proportional to the number of network nodes they contain. The spring layout is used to distribute the nodes on the plot
[57]. Clearly, the different community detection methods find significantly different hierarchies.
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TABLE I. Information summary about the empirical network
datasets used in the calculations. N is number of nodes and M

number of links. Erdős, network science, and geometry are scientific-
collaboration networks. The power-grid is technological, and EVA is
a network of corporate interrelationships. The networks marked with
* were originally weighted.

Network N M Reference

Power-grid 4941 6594 [52]
Erdős 6927 11 850 [53,54]
Network-science* 1589 2742 [13,54]
Geometry* 7343 11 898 [54,55]
EVA 8497 7970 [54,56]

Combining the methods of Infomap, HSBM, and RL,
three different comparisons are possible: Infomap vs HSBM,
Infomap vs RL, and HSBM vs RL. These are presented in
Figs. 7(a)–7(c), respectively. The HSBM method shares a
small similarity with the other two. This is expected because
the other methods lead to relatively large fidelities, while the
HSBM does not.

The similarity between Infomap and the RL method is the
largest among the three possibilities. However, the similarity
cannot be as large as the consistency. This is not surprising as
Infomap is able to return consistencies as large as 1, while RL
is not. The largest similarity value is ≈0.6, occurring at μ = 0
for case 1 in the HPM. Also, the similarity is ≈0.5 at μ = 1
for cases 1 and 2. For the Sierpinski network, the similarity
reaches a maximum value ≈0.5 for small f , and it decays
slowly up to ≈0.2 for large f .

C. Analysis of the hierarchical modular structure
of complex networks

The experiments of the previous section can be repeated
using empirical networks—as opposed to network models—
except for the computation of fidelity because, a priori, it is not
clear which one is the concomitant reference hierarchy. Notice,
however, that this last possibility is not necessarily impossible
for all empirical networks. Many empirical networks have
associated a hierarchical decomposition that can be used as a
“ground truth” about its hierarchical structure. Let us remark
here that by ground truth we refer to the practical use of the
term [40], for example, the NAICS [41] codes for the case

of financial networks [10,42–44] and the harmonized system
[45] for the case of the international trade network [46–48].
However, these studies are left open for future research and, in
what follows, only consistencies and similarities are analyzed
in different empirical networks.

The networks in Table I (referenced therein) are the ones
studied in the following analysis. All of these networks
have convenient characteristics: They are large enough to
show relatively rich hierarchical community structures (e.g.,
Infomap returns up to five hierarchical levels for the case
of the power grid [8]), with diverse shape [e.g., compare
the case of the power grid in Fig. 8(a) with the case of
the network science in Fig. 10(a)], and small enough to keep the
computation time bounded. Originally, some of these networks
had link weights, or self-loops. For the sake of simplicity, such
attributes are removed from the networks. As an illustration
of how different are the hierarchical community structures
identified by the different community detection methods, Fig. 8
shows the results for the power-grid network. In this figure,
it is apparent that the different methods provide substantially
different results.

In order to enrich the analysis, the topology of the empirical
networks is shuffled, following the same procedure applied to
the Sierpinski networks (cf. Sec. III B 2). In this way, the
obtained hierarchies are analyzed as a function of the fraction
f of randomized links.

First, Infomap is used to study the consistency of the
empirical networks. The results are shown in Fig. 9(a). For
some networks, like the power-grid and the Erdős networks,
the identified hierarchies are largely affected by the random-
ization procedure; i.e., the consistency quickly decays with
f . This is particularly reasonable for the power-grid network,
as its hierarchy is embedded into space; reshuffling the links
attenuates the embedding, rapidly destroying its spatial nature
[49–51]. There exist other networks like EVA, geometry, and
network science, for which the consistencies of the identified
hierarchies seem quite robust to the randomization procedure.
This can be interpreted in two ways: On the one hand, this
suggests that the hierarchical community structure is mainly
determined by the node degrees in the networks or some other
topological property that is not destroyed by the randomization
procedure. On the other other hand, it may indicate that the the
relatively large values of consistency are not significant from a
hierarchical point of view. A closer inspection to the network-
science network reveals that the latter possibility is the cause.
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FIG. 9. (Color online) The consistency is plotted for the different empirical networks in Table I, as a function of the fraction of randomly
rewired links, f , and for the different community detection methods: (a) Infomap, (b) HSBM, and (c) RL. In all cases, the bars represent
standard deviations around the mean.
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(a) (b) (c) (d)

FIG. 10. (Color online) Hierarchical partition samples T , computed from the network-science empirical network using Infomap. Each
panel correspond to a different level of link randomization: (a) f = 0, (b) f = 0.2, (c) f = 0.5, and (d) f = 1. In network-science network,
the hierarchy is dominated by branches with almost no children at f = 0, but two branches have considerable size and depth. Then, as f grows,
the hierarchy evolves towards a simple star, as shown in (d).

Specifically, just a relatively small fraction of the network has a
rich hierarchical structure with up to four levels. The rest of the
network nodes are identified as communities at depth l = 1,
which have no children subcommunities [see Fig. 10(a)]. The
hierarchical part is washed out as f grows, eventually leading
to a starlike structure [see Figs. 10(b)–10(d)]. The relatively
large consistency values for large f are the outcome of random
coincidences occurring for these starlike structures.

Second, the HSBM method is used for the analysis and the
results are shown in Fig. 9(b). Overall, a small consistency
is obtained. This is because the HSBM method often finds
a single community, except for the geometry network. This
suggests that the HSBM finds a rich hierarchical structure
for the geometry network in the form of nested block
models. However, a closer inspection indicates that the HSBM
identifies simply two large communities; i.e., there is no
hierarchy, similar to what is found for the network-science
network for the case of Infomap. This explains the slow decay
of the consistency curve.

Third, the consistency is studied using the RL method. The
results are shown in Fig. 9(c). In all cases, the consistency
presents a smooth decay as a function of the randomization
f . This is not a surprise because RL tends to return trees with
a large number of subcommunities and levels. Therefore, the
small changes occurring for increasing f lead to small changes
in the consistencies.

In Figs. 11(a) and 11(c), the average similarity between
the HSBM method and the other two methods is shown as
a function of f . Not surprisingly, the values obtained are
small. However, it is interesting to note that, in certain cases,
the similarity is larger than the corresponding values for the
consistency. For example, cf. the network-science network in

Figs. 9(b) and 11(c) for small values of f . Even though at a first
glance this may seem contradictory, the explanation is simple.
The HSBM tends to return trivial hierarchies, yielding a value
of zero for the hierarchical mutual information. Then, when
the consistency is computed, the number of terms contributing
with zero to the average 〈i(T ; T ′)〉 is proportional to 1 − p2,
where p is the probability for the HSBM to produce a nontrivial
hierarchy. On the other hand, such probability is 1 − p for
the case of the similarity because neither Infomap and nor RL
produce trivial hierarchies. In other words, the chances for zero
terms to occur in the case of the consistency is significantly
larger than for the case of the similarity.

In Fig. 11(b), the similarity compares the results for
Infomap and RL. A sharp peak can be appreciated at f ≈ 0.05.
This is because Infomap returns a sudden change over the
number of identified hierarchies. Namely, the hierarchies pass
from having ≈4 communities at level l = 1, to up to ≈40.
This large number of communities at level l = 1 is always
present for the RL. Therefore, the sharp increase occurs when
the number of communities at level l = 1 becomes large for
Infomap, i.e., when it becomes similar for both methods.

Temporal networks

In this section, the subject of study is slightly modified.
Specifically, the study of traditional complex networks is
replaced by the study of correlation matrices computed from
the log returns of stock prices in the S&P500 [42,43,58].
The data are obtained from Yahoo! Finance [59]. In general,
the correlation matrices can be considered as weighted dense
networks.
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(a) Infomap vs HSBM
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(b) Infomap vs RL
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FIG. 11. (Color online) The similarity is plotted for different empirical networks as a function of the fraction of randomly rewired links f

and the different pairs of community detection methods: (a) Infomap vs HSBM, (b) Infomap vs HSBM, and (c) HSBM vs RL. In all cases, the
bars represent standard deviations around the mean.
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Complex networks are not necessarily static, but change
in time [60]. The temporal aspect of a complex network
could have dramatic consequences for the behavior of the
associated system [61–63]. The correlation matrices of the
S&P500—and the associated hierarchical community
structures—can be studied in their time evolution [10,64,65].
Therefore, we use the hierarchical mutual information to in-
vestigate the evolution of the hierarchical community structure
of the financial activity in the S&P500.

The data encompasses the 390 stocks which uninterruptedly
cover the 3522 working days from January 1, 1998, until
December 31, 2011, according to Yahoo! Finance. Each matrix
entry of the correlation matrices is given by

Css ′ = Cov(Xs,Xs ′ )√
Var(Xs)Var(Xs ′ )

. (9)

Specifically, the right-hand side of Eq. (9) is the cross correla-
tion between the time series Xs(t) and Xs ′ (t), corresponding to
the stocks s and s ′, respectively. In general, cross correlation
matrices have off-diagonal entries in [−1,1], while diagonal
entries are equal to one. To simplify the analysis, the correla-
tion matrices are transformed according to the expression [14]
wss ′ = |Css ′ | − δss ′ . The transformation returns a weighted
network of non-negative entries and zero diagonals. The
transformed networks are the ones used for the computation
of the hierarchies. Even though more sophisticated approaches
exist (see, for example, Ref. [10]), for the sake on simplicity
the approach taken is the one described above.

To perform a temporal analysis, different correlation ma-
trices, or weighted networks, are computed by processing the
data over different time windows [t,t + T ], where t is the
initial day of the time window and T the window duration,
measured in days.

In the following analysis, only the RL community detection
method is used; this is because the other two methods typically
return trivial communities. More specifically, the other two
methods fail to find communities because the correlation
networks are dense [66]. On the other hand, RL is more
sensitive to small link-weight differences, and therefore, it
is able to find communities in the dense matrices, but at risk of
overfitting (see Sec. III B 3). As it was already mentioned, more
sophisticate methods can be used to mitigate these undesired
tendencies (see Sec. III B 1). However, such experiments are
left for future works.

Two sets of experiments are analyzed; in both cases, for
each computed weighted network, 50 hierarchical community
structures, or trees, are computed. In the first set of experi-
ments, we analyze how the integration time, or time window’s
length T , affects the detected hierarchies. For this purpose, we
compute the following average normalized hierarchical mutual
information:

〈iT 〉 := 〈
i
(
TTmax ; TT

)〉
.

We call this quantity, the temporal-scale hierarchical simi-
larity, or simply, the scale similarity. It compares hierarchies
obtained from the full-length time window, against hierarchies
obtained from time windows of length T . In all cases, the initial
time is chosen to be the first day, t = 0. In Fig. 12(a), 〈iT 〉 is
plotted as a function of T . As it can be seen, the larger is
T , the larger is 〈iT 〉. In other words, the expected behavior
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FIG. 12. (Color online) Temporal analysis of the hierarchical
community structure of correlation matrices. The matrices are com-
puted from log returns of the time series of stock prices in the S&P500.
In (a), the scale similarity 〈iT 〉 determines how the hierarchies change
with the time length T of the time window over which the data is
processed. In (b), two different comparisons are presented using the
autosimilarity 〈it,τ 〉. Marked with circles, 〈it=1,τ 〉 determines how
similar are the hierarchies at day one, with the hierarchies τ days
after. Marked with triangles, 〈it,τ=100〉 determines how similar are the
hierarchies of consecutive time windows, separated by 100 days, as
time t evolves. In all cases, the bars represent standard deviations
around the mean.

is observed because, the larger is T the more similar TT and
TTmax become in average. In particular, a plateau exists for
1000 � T � 3000. This last observation suggests that changes
do not occur smoothly, but different hierarchical structural
properties emerge at different time scales.

In the second set of experiments, T is fixed at 1500 days and
trees are computed out of networks corresponding to different
regions in the time line. More specifically, we introduce
the temporal hierarchical autosimilarity—or autosimilarity—
which is defined as

〈it,τ 〉 := 〈i(Tt ; Tt+τ )〉.
The autosimilarity compares two set of hierarchies. The first
set is computed from the data in the time window [t,t + T ],
and the other set from the time window defined τ days after.
We analyze the autosimilarity varying τ for fixed t = 1 and
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varying t for fixed τ = 100. In the first case, we study how
the time separation τ affects the hierarchy, and in the second
case we compare hierarchies corresponding to consecutive
time windows as time evolves. In Fig. 12(b), both quantities
are plotted. On the one hand, the autosimilarity 〈it=1,τ 〉 decays
as the time separation τ grows (circles); i.e., the hierarchy
drifts away from the initial structure. On the other hand, the
autosimilarity fluctuates around 〈it,τ=100〉 ≈ 0.7 (triangles),
indicating that the hierarchies of consecutive time windows
always share a significant amount of information.

IV. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

In this work, the hierarchical mutual information has
been introduced, a tool that generalizes the standard mu-
tual information for the comparison of hierarchies, more
specifically, for the comparison of hierarchical partitions,
which take the form of trees where parts are subsequently
subdivided further into subparts, and so on. The hierarchical
mutual information can be used to compare the hierarchical
community structure of complex networks, in a way analogous
to how the standard mutual information can be used to compare
standard community structures.

We define here a normalized hierarchical mutual informa-
tion. The traditional normalized mutual information satisfies
certain properties; it is a quantity lying in [0,1] and is
equal to 1 if and only if the compared partitions are exactly
equal. If the normalized hierarchical mutual information
behaves correctly, it should satisfy analogous properties. The
appropriate behavior of the normalized hierarchical mutual
information is extensively tested in numerical experiments.
The test includes artificially generated hierarchical partitions
and the hierarchical community structure of artificially and
empirical complex networks. In all the experiments, the
normalized hierarchical mutual information is found to behave
correctly. However, it should be mentioned that a formal proof
of the correct behavior is not provided in the present work.

The experiments also illustrate the overall behavior of
the hierarchical mutual information. On the one hand, when
comparing artificially generated hierarchies against corre-
spondingly randomized ones, the normalized hierarchical
mutual information was found to decrease with the level of ran-
domization. On the other hand, a level by level randomization
analysis of the hierarchies indicated that the larger the number
of randomized levels, the faster the normalized hierarchical
mutual information decays with the randomization. Another
interesting finding was that the normalized hierarchical mutual
information never decays to zero. This effect, also present in
the standard normalized mutual information, occurs because
random (hierarchical) partitions in finite systems share infor-
mation just by chance.

The experiments also constitute examples of how the
hierarchical mutual information can be used to analyze
the hierarchical community structure of complex networks.
Specifically, the hierarchical community structure of artificial
and empirical networks were studied. In the analysis, different

popular community detection methods were utilized and the
results compared. The results were tested on two network
models and five empirical networks. It was found that the
different methods can return significantly different hierarchical
community structures. The normalized hierarchical mutual
information correctly identifies these differences. It was also
shown that the normalized hierarchical mutual information
can be used to compare the detected hierarchies against the
natural reference ones in the different network models. In
particular, when the parameters of the network models are
appropriate and the network models tend to generate networks
with the expected hierarchical structures, the normalized
mutual information between the identified hierarchies and the
expected ones tends to grow.

In another set of experiments, the normalized hierarchical
mutual information was used to compare the hierarchical
community structure of the different networks—the networks
generated by the models, and the empirical networks—against
that of correspondingly randomized networks. As expected,
the normalized mutual information was found to decay with the
level of randomization. In a final example, the time evolution
of the hierarchical community structure of correlation matrices
was analyzed. Specifically, we considered correlation matrices
computed from the log returns of stock prices in the S&P500.
This final example epitomizes how the hierarchical mutual
information is useful to study the evolution of temporal
networks. In the analysis, the normalized hierarchical mutual
information showed that the hierarchical community structure
of the correlations of stocks slowly changes in time, but
exhibiting important changes at different times scales.

The present work opens several possibilities for future
research. The mathematical framework behind the hierarchical
mutual information can be used to generalize other information
measures, like generalizing the variation of information [27].
On a different line of research, the normalized hierarchical
mutual information can be used to systematically benchmark
and compare the different community detection methods in
existence. Another interesting future line of research concerns
the comparison of phylogenetic trees [28,30,67,68], where the
hierarchical mutual information could have useful applica-
tions. Finally, the normalized hierarchical mutual information
can be used to compare the identified hierarchies against
corresponding ground-truth hierarchies that different data
sets might have available. The above examples go without
mentioning the ample possibilities of using and extending
this methodology in the many fields where hierarchical
communities structures are identified.
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and R. N. Mantegna, Eur. Phys. J. B 38, 363 (2004).
[45] http://www.wcoomd.org.
[46] C. A. Hidalgo, B. Klinger, A.-L. Barabási, and R. Hausmann,

Science 317, 482 (2007).
[47] M. Barigozzi, G. Fagiolo, and D. Garlaschelli, Phys. Rev. E 81,

046104 (2010).
[48] G. Caldarelli, M. Cristelli, A. Gabrielli, L. Pietronero, A. Scala,

and A. Tacchella, PloS One 7, e47278 (2012).
[49] H. D. Rozenfeld, C. Song, and H. A. Makse, Phys. Rev. Lett.

104, 025701 (2010).
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