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Exact results on high-dimensional linear regression via statistical physics
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It is clear that conventional statistical inference protocols need to be revised to deal correctly with the high-
dimensional data that are now common. Most recent studies aimed at achieving this revision rely on powerful
approximation techniques that call for rigorous results against which they can be tested. In this context, the
simplest case of high-dimensional linear regression has acquired significant new relevance and attention. In this
paper we use the statistical physics perspective on inference to derive several exact results for linear regression
in the high-dimensional regime.
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I. INTRODUCTION

The advent of modern high-dimensional data poses a
significant challenge to statistical inference. The latter is un-
derstood well in the conventional regime of growing sample
size with constant dimension. For high-dimensional data,
where the dimension is of the same order as the sample size,
the foundations of inference methods are still fragile, and
even the simplest scenario of linear regression [1] has to be
revised [2]. The study of linear regression (LR) in the high-
dimensional regime has recently attracted significant attention
in the mathematics [3–6] and statistical physics communities
[7–9]. The statistical physics framework is naturally suited to
deal with high-dimensional data.

While the connection between statistical physics and infor-
mation theory was established a while ago by Jaynes [10], the
approach has more recently been extended also to information
processing [11] and machine learning [12]. In the statistical
physics framework, the free energy encodes statistical prop-
erties of inference, akin to cumulant generating functions in
statistics, but its direct computation via high-dimensional in-
tegrals is often difficult. This led to the development of several
nonrigorous methods, such as the mean-field approximation,
the replica trick and the cavity method [13]. Message passing
in particular, which can be seen as algorithmic implementa-
tion of the latter [14], has emerged as an efficient analysis tool
for statistical inference in high dimensions [15–17].

Most rigorous results on high-dimensional LR were ob-
tained upon assuming uncorrelated data [4,8,15,17], possibly
with sparsity of parameters [3,6]. Recently, correlations in
sampling were analyzed in Ref. [16] for rotationally invariant
data matrices. In all these studies, however, the parameters of
the noise in the data were assumed known, unlike the standard
statistical setting where they are usually inferred [1]. The

*Corresponding author: alexander.mozeika@klc.ac.uk

exact prescription of the noise strength is unwelcome, since
it is artificially removing an important source of overfitting in
realistic applications of regression. In high-dimensional LR,
inference protocols can mistake noise for signal, reflected in
increased under-estimation of the noise and over-estimation
of the magnitude of other model parameters (see Fig. 1).

In this paper we derive exact results for the high-
dimensional regime of Bayesian LR which complement the
aforementioned rigorous studies, using the statistical physics
formulation of inference.

Statement of the problem and preview of results

We consider Bayesian inference of the LR model, t =
Zθ + σε, where t ∈ IRN and Z ∈ IRN×d are observed and
the parameters θ ∈ IRd and σ ∈ IR+ are to be inferred, with
ε denoting zero-average noise. We adopt a teacher-student
scenario [18,19]: the teacher samples independently the rows
of Z from some probability distribution P(z) and then uses
the LR model to obtain t with the true parameters (θ0, σ0).
We assume that the student then applies the Bayes formula to
try to infer (θ, σ ) assuming a Gaussian1 prior N (θ|0, η−1Id )
for θ, and a generic prior P(σ 2) for the noise parameter σ 2.
Specifically, we do not consider the case where the observa-
tions are coming from an unknown source and/or where one
needs to do model selection.

We map the LR inference problem onto a Gibbs-
Boltzmann distribution with inverse ‘temperature’ β. This
allows us to investigate properties of different inference pro-
tocols. In particular, maximum a posteriori (MAP) inference
is obtained for β → ∞ and η > 0, maximum likelihood
(ML) inference for β → ∞ and η = 0, and marginalization

1The distribution of a Gaussian (or Normal) random variable x ∈
IRd , with mean μ ∈ IRd and covariance � ∈ IRd×d , is given by the

density N (x|μ, �) = e− 1
2 (x−μ)T�−1(x−μ)

|2π�|d/2 .
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FIG. 1. High-dimensional phenomena in inference with the linear regression (LR) model in the teacher-student scenario (see text).
Comparison between parameters inferred with maximum likelihood (ML) (θ̂, σ̂ ) and true values (θ0, σ0). (a) Plot of the ordered set
θ̂ (θ0) = {[θ̂ (1), θ0(1)], . . . , [θ̂ (d ), θ0(d )]} for d/N ∈ {0.01, 0.675, 0.867}, represented by symbols {•, ×,�}, with N ∈ {26000, 385, 300}.
For each value of d/N the rows of Z were sampled from N (0, Id ), ε was sampled from N (0, σ 2

0 IN ), with σ 2
0 = 0.1, and θ0 was sampled

from N (0, Id ). (b) Plot of σ̂ 2 versus σ 2
0 , represented by points connected by lines, for d/N ∈ {0.01, 0.675, 0.867} (top to bottom). Each point,

together with ± one standard-deviation error-bars, represents an average over 250 samples. Note that in both plots the diagonal line corresponds
to perfect inference.

inference for β = 1. We will refer to “ML (MAP) at finite
temperature” for the case of η = 0 (η > 0) and β finite.

The high-dimensional regime is obtained for (N, d ) →
(∞,∞) with fixed ratio ζ = d/N ∈ (0,∞). We will hence-
forth indicate this limit as (N, d ) → ∞, to simplify notation.
Note that to keep t finite in the (N, d ) → ∞ limit, the matrix
Z has to be replaced with Z/

√
d (unless of course we impose

a suitable sparsity condition).
Within the above setting we obtain the following results:

(i) If σ 2 is known and the distributions of Z and ε are Gaus-
sian, then we compute the distribution of the MAP and ML
estimators of θ. (ii) The ML estimator σ̂ 2

ML of the noise pa-
rameter σ 2 is self-averaging as (N, d ) → ∞ (i.e., its variance
is vanishing2 in this limit), for any distributions of Z and ε.
We bound the likelihood of deviations of σ̂ 2

ML from its mean
for Gaussian noise ε. (iii) We compute the characteristic func-
tion of the mean square error 1

d ||θ0 − θ̂ML[D]||2 for the ML
estimator at finite (N, d ), where θ0 are the true parameters.
(iv) We determine average and variance of the free energy,
associated with Gibbs-Boltzmann distribution of Bayesian
LR, of ML inference for the finite β and finite (N, d ). The
ML free-energy density is self-averaging as (N, d ) → ∞ if
the eigenvalue spectrum of the empirical covariance matrix
ZTZ/N is self-averaging. For Gaussian ε and Z, we re-
cover the results obtained by the replica method in Ref. [9].

2Here we adopt the definition from statistical physics of disordered
systems which states that some density, such as free energy, average
energy, etc., is self-averaging if its variance is vanishing in the ther-
modynamic limit [13]. In statistics this phenomena is also referred to
as having a “fully concentrated measure” [6,20].

(v) If the true parameters θ0 are independent random vari-
ables, then we derive average and variance of the free energy
of MAP inference for finite β and (N, d ). The MAP free
energy is shown to be self-averaging if the spectrum of ZTZ/N
is self-averaging as (N, d ) → ∞.

In the following subsections we describe how the above
results were obtained, with full mathematical details relegated
to the Supplemental Material [21].

II. STATISTICAL PHYSICS AND BAYESIAN INFERENCE

We assume that we observe a data sample of “input-output”
pairs {(z1, t1), . . . , (zN , tN )}, where (zi, ti ) ∈ IRd+1, generated
randomly and independently from

P(t, z|�) = P(t |z,�)P(z), (1)

with parameters � that are unknown to us. If we assume a
prior distribution P(�), then the distribution of �, given the
data, follows from the Bayes formula

P(�|D ) = P(�)
∏N

i=1 P(ti|zi,�)∫
d�̃P(θ̃)

{∏N
i=1 P(ti|zi, �̃)

} . (2)

Here D = {t, Z}, with t = (t1, . . . , tN ), and Z = (z1, . . . , zN )
is an N × d matrix. In Bayesian language, Eq. (2) is the
posterior distribution of �, given the prior distribution P(�)
and the observed data D .

The simplest way to use Eq. (2) for inference is to compute
the maximum a posteriori (MAP) estimator

�̂MAP[D] = argmin� E (�|D ), (3)
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in which the so-called Bayesian likelihood function

E (�|D ) = −
N∑

i=1

log P(ti|zi,�) − log P(�) (4)

consists of a first term, the log-likelihood used also in maxi-
mum likelihood (ML) inference, and a second term, that acts
as a regularizer. Bayesian inference can thus be seen as a gen-
eralization of MAP inference, and MAP inference generalizes
ML inference.

The square error 1
d ||�0 − �̂[D]||2, with the Euclidean

norm || · · · || and the true parameters �0 underlying the data,
is often used to quantify the quality of inference in Eq. (3).
Its first moment is the mean square error (MSE) 1

d 〈〈||�0 −
�̂[D]||2〉D〉�0 . Furthermore, the posterior mean

�̂[D] =
∫

d� P(�|D )� (5)

(the marginalization estimator) is the minimum MSE (MMSE)
estimator in the Bayes optimal case, i.e., when prior distribu-
tion and model likelihood are known [19].

The above approaches to Bayesian inference can be unified
conveniently in a single statistical physics (SP) formulation
via the Gibbs-Boltzmann distribution

Pβ (�|D ) = e−βE (�|D )

Zβ[D]
, (6)

with the normalization constant, or “partition function”
Zβ[D] = ∫

d� e−βE (�|D ). For β = 1 this is the evidence term
of Bayesian inference. In statistical physics language, Eq. (4)
plays the role of “energy” in Eq. (6) and β is the (fictional)
inverse temperature. The temperature can be interpreted as a
noise amplitude in stochastic gradient descent minimization
of E (�|D ) [9]. Properties of the system Eq. (6) follow upon
evaluating the “free energy,”

Fβ[D] = − 1

β
log Zβ[D]. (7)

The estimator Eqs. (3) and (5) are recovered from the
average

∫
d� Pβ (�|D )� by taking the zero “temperature”

limit β → ∞, or by setting β = 1, respectively. This fol-
lows upon observing that for β = 1 the distribution Eq. (6)
and the posterior Eq. (2) are identical, and that �̂MAP[D] =
limβ→∞

∫
d� Pβ (�|D )� by the Laplace argument3. We

note that the interpretation of the MAP estimator Eq. (3) in the
SP framework Eq. (6) is that �̂MAP[D] is the “ground state” of
the system. Regarding the formulation Eq. (6) we stress that,
even though the (inverse) temperatures β = 1 and β → ∞ are
the most common for inference, the benefits of the generic
“thermal” noise are well known for optimization problems in
general [23] and for Bayesian inference in particular [24].

The Kullback-Leibler (KL) “distance” [25] between
the distribution P(t, z|�) and its empirical counterpart

3In this work we will mainly rely on the identities
limM→∞ − 1

M log
∫

dx e−Mφ(x) = φ(x0), where x0 = argminxφ(x),

and limM→∞
∫

dx e−Mφ(x)∫
d x̃ e−Mφ(x̃) g(x) = g(x0) for sufficiently smooth and

well behaved functions φ, g of x ∈ IRp with p = O(M0) [22].

P̂(t, z|D ) = N−1 ∑
i δ(t − ti )δ(z − zi ), given by

D(P̂[D]||P�) =
∫

dt dz P̂(t, z|D ) log

(
P̂(t, z|D )

P(t, z|�)

)
(8)

can also be used to obtain the ML estimator, via �̂ML[D] =
argmin�D(P̂||P�). Furthermore, since ND(P̂[D]||P�) =
E (�|D ) + log P(�) − NS(P̂[D]), where the last term, mi-
nus the Shannon entropy of P̂[D], is independent of
�, the MAP estimator can be obtained via �̂MAP[D] =
argmin�{ND(P̂||P�) − log P(�)}.

Finally, the KL distance Eq. (8) can also be used
to define the difference 
D(�,�0|D ) = D(P̂[D]||P�) −
D(P̂[D]||P�0 ), where �0 are the true parameters responsible
for the data, which served as a useful measure of over-fitting
in ML inference [26], and was recently extended to MAP
inference in generalized linear models [9]. Both latter studies
used the SP framework, equivalent to Eq. (7), to study typical
(as opposed to worst-case) properties of inference in the high-
dimensional regime via the average free-energy 〈Fβ [D]〉D/N
as computed by the replica method [13].

III. BAYESIAN LINEAR REGRESSION

In Bayesian linear regression (LR) with Gaussian priors,
also called ridge regression, it is assumed that the data (zi, ti )
are for all i sampled independently from the distribution
N (t |θ.z, σ 2)P(z), so the energy Eq. (4), with � ≡ {θ, σ 2}, is
given by

E (θ, σ 2|D ) = 1

2σ 2
||t − Zθ||2 + 1

2
η||θ||2

+ 1

2
N log(2πσ 2) − log P(σ 2), (9)

where η � 0 is the hyper-parameter for the Gaussian prior
P(θ) and P(σ 2) is a generic prior. The true parameters of D
are written as θ0 and σ 2

0 , i.e., we assume that t = Zθ0 + ε

with the noise vector ε being sampled from some distribution,
e.g., the multivariate Gaussian N (0, σ 2

0 IN ), with mean 0 and
covariance σ 2

0 IN .
The energy function can be expressed as

E (θ, σ 2|D ) =
(
θ − J−1

σ 2η
ZTt

)T
Jσ 2η

(
θ − J−1

σ 2η
ZTt

)
2σ 2

+
tT

(
IN − ZJ−1

σ 2η
ZT

)
t

2σ 2

+ N log(2πσ 2) − 2 log P(σ 2)

2
, (10)

where we defined the d × d matrix J = ZTZ, with elements
[J]k� = ∑N

i=1 zi(k)zi(�), and its “regularized” version Jσ 2η =
J + σ 2 η Id . The distribution Eq. (6) is now

Pβ (θ, σ 2|D ) = Pβ (θ| σ 2,D )e−β[F
β,σ2 [D]+ 1

2 N log(2πσ 2 )−log P(σ 2 )]∫ ∞
0 d σ̃ 2 e−β[F

β,σ̃2 [D]+ 1
2 N log σ̃ 2−log P(σ̃ 2 )]

,

where Pβ (θ|σ 2,D ) is the Gaussian distribution

Pβ (θ| σ 2,D ) = N
(
θ
∣∣ J−1

σ 2η
ZTt, σ 2β−1J−1

σ 2η

)
, (11)
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with mean J−1
σ 2η

ZTt and covariance σ 2β−1J−1
σ 2η

. We have also
defined the conditional free energy,

Fβ,σ 2 [D] = d

2β
+ 1

2σ 2
tT

(
IN − ZJ−1

σ 2η
ZT

)
t

− 1

2β
log

∣∣2πeσ 2β−1J−1
σ 2η

∣∣, (12)

while the full free energy associated with Eq. (11) is given by

Fβ [D] = − 1

β
log

∫
dθ dσ 2 e−βE (θ,σ 2|D )

= − 1

β
log

∫ ∞

0
dσ 2e−β[F

β,σ2 [D]+ N
2 log(2πσ 2 )−log P(σ 2 )].

(13)

For β → ∞ the free energy is via the Laplace argument given
by F∞[D] = minθ,σ 2 E (θ, σ 2|D ).

F∞[D] is the ground state energy of Eq. (11). The ground
state {θ̂[D], σ̂ 2[D]} = argminθ,σ 2 E (θ, σ 2|D ) is given by

θ̂[D] = J−1
σ 2η

ZTt, (14)

i.e., the mean of Eq. (11), and the solution of the equation

σ 2 = 1

N
||t − Zθ̂[D]||2 + 2σ 4

N

∂

∂σ 2
log P(σ 2), (15)

corresponding to the MAP estimators of the parameters.4

From the second line in Eq. (13) we infer

F∞[D] = min
σ 2

[
F∞,σ 2 [D] + N log(2πσ 2)

2
− log P(σ 2)

]
,

(16)

(again via the Laplace argument), as well as for (N, d ) → ∞
the free-energy density fβ[D] = 1

N Fβ [D] at any β:

fβ[D] = min
σ 2

[
Fβ,σ 2 [D]

N
+ log(2πσ 2)

2
− log P(σ 2)

N

]
. (17)

For β = 1 the distribution Eq. (11) can be used to compute
the MMSE estimators of θ and σ 2, given by the averages∫ ∞

0
dθ dσ 2 Pβ (θ, σ 2|D ) θ = 〈

J−1
σ 2η

ZTt
〉
σ 2 ,∫ ∞

0
dθ dσ 2 Pβ (θ, σ 2|D ) σ 2 = 〈σ 2〉σ 2 ,

(18)

where the short-hand 〈· · · 〉σ 2 refers to averaging over the
following marginal of the distribution Eq. (11):

Pβ (σ 2|D ) = e−β[F
β,σ2 [D]+ N

2 log(2πσ 2 )−log P(σ 2 )]∫ ∞
0 d σ̃ 2 e−β[F

β,σ̃2 [D]+ N
2 log(2πσ̃ 2 )−log P(σ̃ 2 )]

. (19)

If the density Fβ,σ 2 [D]/N is self-averaging, then for (N, d ) →
∞ this marginal is dominated by the solution of Eq. (17).

4If the inverse-χ 2 distribution is used as a prior for σ 2, then the
MAP estimator for the latter is given by σ 2 = 1

N+ν+2 + 1
N+ν+2 ||t −

Z θ̂[D]||2 which suggests that the hyper-parameter ν has to be exten-
sive to remain relevant for large N .

The dominant value of θ in Eq. (18) is Eq. (14), but with
σ 2 being the solution of the following equation, which for
β = 1 gives the MMSE estimators, and which recovers the
MAP estimators Eqs. (14) and (15) when β → ∞:

σ 2 = β

(β − ζ )

1

N
||t − Zθ̂[D]||2 − σ 4η

(β − ζ )

1

N
Tr

[
J−1

σ 2η

]

+ 2σ 4β

(β − ζ )N

∂

∂σ 2
log P(σ 2). (20)

The free energies Eqs. (12) and (13) obey the
Helmholtz free-energy relations. In particular, with
E (θ|D ) = E (θ, σ 2|D ) − 1

2 N log(2πσ 2) + log P(σ 2) we
get

Fβ,σ 2 [D] = Eβ[D] − T Sβ[D], (21)

where T = 1/β, with the average energy

Eβ[D] =
∫

dθ Pβ (θ|σ 2,D )E (θ|D ), (22)

and with the differential entropy

Sβ[D] = −
∫

dθ Pβ (θ|σ 2,D ) log Pβ (θ|σ 2,D ). (23)

In the free-energy Eq. (12) we have

Eβ[D] = d

2β
+ 1

2σ 2
tT

(
IN − ZJ−1

σ 2η
ZT

)
t,

Sβ[D] = 1

2
log

∣∣2πeσ 2β−1J−1
σ 2η

∣∣. (24)

Furthermore, the average energy can be written as

Eβ[D] = d

2β
+ min

θ
E (θ, σ 2|D ). (25)

We stress that the formulation of LR Bayesian inference
via a Gibbs-Boltzmann distribution is not new, see, e.g.,
Refs. [19,26]. However, unlike most previous works, here we
also consider the case of unknown σ and we keep the tem-
perature generic for most of the analysis, instead of limiting
ourselves to the familiar cases T ∈ {0, 1}. In the case in which
the noise parameter σ 2 is known, i.e., P(σ 2) = δ(σ 2 − σ 2

0 ),
our free-energy expression reduces to Fβ [D] = Fβ,σ 2

0
[D] −

N
2β

log(2πσ 2
0 ) and Pβ (θ, σ 2|D ) = Pβ (θ|σ 2

0 ,D )δ(σ 2 − σ 2
0 ).

A. Distribution of estimators θ̂MAP and θ̂ML

If the noise parameter σ 2 is independent of the realization
of the data D , e.g., σ 2 is known or self-averaging as (N, d ) →
∞, and the noise ε has Gaussian statistics N (0, σ 2

0 IN ), then
the distribution of the MAP estimator Eq. (14) is

P(θ̂) = 〈
N

(
θ̂
∣∣J−1

σ 2η
Jθ0, σ 2

0 J−2
σ 2η

J
)〉

Z. (26)

For η = 0, i.e., ML inference, and without averaging over
Z, this recovers Theorem 7.6b in Ref. [1]. To probe the
(N, d ) → ∞ regime we rescale zi(μ) → zi(μ)/

√
d with now

zi(μ) = O(1). This gives J = C/ζ and Jσ 2η = Cζσ 2η/ζ , with
the sample covariance matrix [C]μν = N−1 ∑N

i=1 zi(μ)zi(ν)
and Cζσ 2η = C + ζσ 2ηI, so

P(θ̂) = 〈
N

(
θ̂
∣∣C−1

ζσ 2η
Cθ0, ζσ 2

0 C−2
ζσ 2η

C
)〉

Z. (27)
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FIG. 2. Theoretical predictions for ML inference of the LR model t = Zθ + σε, where t ∈ IRN and Z ∈ IRN×d , in the high-dimensional
regime 0 < d/N < 1. For each sample the rows of Z were sampled from the Gaussian N (0,�). The covariance matrix � is such that [�]ν,ν =
1, [�]ν,ν+1 = [�]ν+1,ν = ε with 0 � ε < 1 for ν odd, and [�]ν1,ν2 = 0 for all other ν1 	= ν2. The density of eigenvalues of � is given exactly
by ρ(λ) = 1

2 δ(λ − 1 − ε) + 1
2 δ(λ − 1 + ε) for any even d . For each sample the noise vector ε was sampled from N (0, σ 2

0 IN ). For each value
of d/N the (true) parameter θ0 was sampled from N (0, Id ) only once. (a) Inferred noise parameter σ 2 as a function of d/N , where (d, N ) pairs
range from (10, 104) to (310,323), plotted for true value of noise σ 2

0 ∈ {0.05, 0.10, 0.20} (top to bottom). Solid lines are the averages predicted
by the theory in Eq. (32) and symbols, with ± one standard-deviation error-bars, are empirical averages over the 250 samples of data {t, Z}.
Error-bars are consistent with the variance predicted by the theory in Eq. (32). (b) MSE as a function of d/N plotted for ε ∈ {0, 0.75, 0.9}
(bottom to top) and σ 2

0 = 0.1. Solid lines correspond to the theoretical prediction
ζσ 2

0
1−ζ−N−1

1
1−ε2 for average MSE, computed via Eq. (39), and

symbols, with ± one standard-deviation error-bars, are empirical averages over the 250 samples. Note the logarithmic scale of the vertical axis.

Error-bars are consistent with the variance,
2ζ 2σ 4

0
(1−ζ )2

1+ε2

d (1+ε)2 (1−ε)2 , as predicted by Eq. (39).

Furthermore, for a Gaussian sample with true covariance
matrix �, i.e., if each zi in Z is drawn independently from

N (0,�), then the distribution of θ̂ for any finite (N, d ) is the
Gaussian mixture

P(θ̂) =
∫

dC W (C|�/N, d, N )N
(
θ̂
∣∣C−1

ζσ 2η
[C] Cθ0, ζσ 2

0 C−2
ζσ 2η

[C] C
)
. (28)

The integral is over all symmetric positive definite d × d matrices, and W (C|�/N, d, N ) is the Wishart distribution, which is
nonsingular when d � N . Note that Eq. (28) also represents the distribution of “ground states” of Eq. (11).

For η = 0 the distribution Eq. (28) becomes the multivariate Student’s t-distribution with N + 1 − d degrees of freedom:

P(θ̂) = �
(

N+1
2

)
�

(
N+1−d

2

) ∣∣∣∣ (1 − ζ + 1/N )�

π (N + 1 − d )ζσ 2
0

∣∣∣∣
1
2
[

1 + (θ̂ − θ0)T (1 − ζ + 1/N )�

(N + 1 − d )ζσ 2
0

(θ̂ − θ0)

]− N+1
2

. (29)

The vector of true parameters θ0 is the mode and [ζσ 2
0 /(1 −

ζ − N−1)]�−1 is the covariance matrix of Eq. (29). In the
regime (N, d ) → ∞ one can recover from Eq. (29) the mo-
ments of the multivariate Gaussian suggested by the replica
method [9]. In this regime one indeed finds that any finite
subset of components of θ̂ML is described by a Gaussian
distribution [27,28].

B. Statistical properties of the estimator σ̂2
ML

For η = 0 the estimator Eq. (14) simplifies considerably to

θ̂ML[D] = (ZTZ)−1ZTt, (30)

giving us, via Eq. (15), the ML noise estimator

σ̂ 2
ML = 1

N
εT(IN − Z (ZTZ)−1ZT)ε. (31)

In particular, if the noise ε originates from a distribution with
mean 0 and covariance σ 2

0 IN , then the mean and variance of
σ̂ 2

ML are

〈
σ̂ 2

ML

〉
ε
= σ 2

0 (1 − ζ ), Var
(
σ̂ 2

ML

) = 2σ 4
0

N
(1 − ζ ). (32)

Hence, for (N, d ) → ∞ the noise estimator Eq. (31) is inde-
pendent of Z and self-averaging (see Fig. 2). Furthermore, for
finite (N, d ) and δ > 0 the probability of finding an extreme
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value of σ̂ 2
ML /∈ Iσ0,δ , where Iσ0,δ ≡ (σ 2

0 (1 − ζ ) − δ, σ 2
0 (1 −

ζ ) + δ), is

Prob
[
σ̂ 2

ML /∈ Iσ0,δ

] = Prob
[
N σ̂ 2

ML � N
(
σ 2

0 (1 − ζ ) − δ
)]

+ Prob
[
N σ̂ 2

ML � N
(
σ 2

0 (1 − ζ ) + δ
)]

�
〈
e− 1

2 α||t−Zθ̂ML[D]||2 〉
D

e
1
2 αN (σ 2

0 (1−ζ )−δ)

+ 〈
e

1
2 α||t−Zθ̂ML[D]||2 〉

D
e− 1

2 αN (σ 2
0 (1−ζ )+δ).

(33)

Assuming that the noise ε is Gaussian, described by
N (0, σ 2

0 IN ), the moment-generating function (MGF)〈
e

1
2 α||t−Zθ̂ML[D]||2 〉

D
= e− N

2 (1−ζ ) log (1−ασ 2
0 ) (34)

is independent of Z, allowing us to estimate the fluctuations
of σ̂ 2

ML for δ ∈ [0, σ 2
0 (1 − ζ )] via the inequality

Prob
[
σ̂ 2

ML /∈ Iσ0,δ

]
�

∑
s=±1

e
− 1

2 N[(1−ζ ) log( 1−ζ

1−ζ+sδ/σ2
0

)+sδ/σ 2
0 ]

. (35)

For α = 2ia with a ∈ IR, the MGF Eq. (34) becomes the
characteristic function (CF)〈

eia||t−Zθ̂ML[D]||2 〉
D

= (
1 − ia 2σ 2

0

)− 1
2 N (1−ζ )

(36)

of the random variable ||t − Zθ̂ML[D]||2. Note that Eq. (36)
is the CF of the gamma distribution (see Theorem 7.6b in
Ref. [1]), with mean Nσ 2

0 (1 − ζ ) and variance N2σ 4
0 (1 − ζ ).

Mean and variance of σ̂ 2
ML are σ 2

0 (1 − ζ ) and 2σ 4
0 (1 − ζ )/N ,

respectively. For σ0 = 1 we obtain that N σ̂ 2
ML is a chi-square

distribution with N (1 − ζ ) degrees of freedom, as expected
from Cochran’s theorem [29].

Finally, it follows from Eqs. (32) and (20) that the fi-
nite temperature ML noise estimator in the high-dimensional
regime is given by

σ̂ 2
ML = β

β − ζ
σ 2

0 (1 − ζ ). (37)

We observe that for β = 1 we obtain unbiased estimation of
σ 2. The latter suggests that “thermal” noise, controlled by β,
is beneficial for the ML inference of σ 2. However, that this is
indeed the case, and that the value β = 1 is “special,” is not a
priori obvious for this model. Our development confirms the
result obtained in evaluating the average free energy with the
replica method [9].

C. Statistical properties of MSE in ML inference

Using the distribution Eq. (29) and with the eigenvalues
λ1(�) � λ2(�) � · · · � λd (�) of the true (population) co-
variance matrix �, the CF of the MSE, defined as 1

d ||θ0 −
θ̂ML[D]||2 for finite (N, d ), can be written as

〈eiα||θ0−θ̂ML[D]||2〉D =
∫ ∞

0
dω �N+1−d (ω)

×
d∏

�=1

(
1 − iα2ζσ 2

0

ω(1 − ζ + N−1)λ�(�)

)− 1
2

,

(38)

with the gamma distribution �ν (ω) = νν/2

2ν/2�(ν/2)ω
ν−2

2 e− 1
2 νω for

ν > 0. The last term in Eq. (38) is the product of CFs of
gamma distributions with the same “shape” parameter 1/2,
but different “scale” parameters 2ζσ 2

0 /ω(1 − ζ + N−1)λ�(�).
From Eq. (38) one obtains mean and variance of MSE:

μ(�) = 1

d
〈||θ0 − θ̂ML[D]||2〉D = ζσ 2

0

1 − ζ − N−1

Tr[�−1]

d
,

Var

(
1

d
||θ0 − θ̂ML[D]||2

)
= 2ζ 2σ 4

0

(1 − ζ )2

Tr[�−2]

d2
. (39)

The latter gives us the condition for self-averaging of the
MSE, i.e., Var( 1

d ||θ0 − θ̂ML[D]||2) → 0 as (N, d ) → ∞. We
note that Eq. (39) suggests that MSE is dominated by the
smallest eigenvalue of the true covariance � and hence it can
grow with an increase in the covariate correlations (see Fig. 2).

We finally consider deviations of 1
d ||θ0 − θ̂ML[D]||2 from

the mean μ(�) given in Eq. (39). The probability of observ-
ing the event event 1

d ||θ0 − θ̂ML[D]||2 /∈ Iμ,δ , where Iμ,δ ≡
(μ(�) − δ, μ(�) + δ) for δ > 0, is bounded from above as
follows:

Prob

[
1

d
||θ0 − θ̂ML[D]||2 /∈ Iμ,δ

]

= Prob[||θ0 − θ̂ML[D]||2 � d (μ(�) − δ)]

+ Prob[||θ0 − θ̂ML[D]||2 � d (μ(�) + δ)]

� C−e−N�−[α,μ(λd ),δ] + C+e−N�+[α,μ(λ1 ),δ], (40)

with some small α > 0 and positive constants C±. For the rate
function �−[α,μ(λd ), δ] to be positive for arbitrary small δ

it is sufficient that μ(λd ) � 1, where μ(λ) = ζσ 2
0 /(1 − ζ )λ,

while for μ(λd ) < 1 for this to happen the δ values must
satisfy δ > 1 − μ(λd ). The rate function �+[α,μ(λ1), δ] is
positive for any δ ∈ [0, μ(λ1)].

D. Statistical properties of the free energy

We consider the free-energy Eq. (12) for finite inverse
temperature β and finite (N, d ). Assuming that the noise ε

has mean 0 and covariance σ 2
0 IN , and that the parameter σ 2 is

independent of D , the average free energy is

〈Fβ,σ 2 [D]〉D = d

2β
+ 1

2σ 2
θT

0

〈(
J − JJ−1

σ 2η
J
)〉

Zθ0

+ σ 2
0

2σ 2

(
N − 〈

Tr
[
JJ−1

σ 2η

]〉
Z

)
− 1

2β

〈
log

∣∣2πe σ 2β−1J−1
σ 2η

∣∣〉
Z. (41)

Under the same assumptions, the variance of Fβ,σ 2 [D] can be
obtained by exploiting the Helmholtz free-energy representa-
tion Fβ,σ 2 [D] = Eβ[D] − T Sβ[D], giving us

Var(Fβ,σ 2 [D]) = Var(Eβ[D]) + T 2Var(Sβ [D])

− 2T Cov(Eβ[D], Sβ[D]). (42)

The full details on each term in Eq. (42) are found in Ref. [21].
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fβ

1/β

FIG. 3. Asymptotic free-energy density fβ = limN→∞ fβ [D] of finite temperature ML inference as a function of temperature T = 1/β,
plotted for ζ ∈ {1/10, 2/10, . . . , 9/10} (from right to left) in the high-dimensional regime where N, d → ∞ with fixed ratio ζ = d/N . For
β → ∞ it approaches the value 1

2 log[2πeσ 2
0 (1 − ζ )]. For β → ζ it approaches 1

2ζ
[ζ log(1 − ζ ) − log(1 − ζ ) − ζ ], and for β ∈ (0, ζ ), i.e.,

in the high “temperature” region T ∈ (1/ζ , ∞), the free-energy density is −∞. Here the true noise parameter is σ 2
0 = 1 and the true data

covariance matrix is Id .

1. Free energy of ML inference

For η = 0 and after transforming zi(μ) → zi(μ)/
√

d for
all (i, μ), with zi(μ) = O(1), Eq. (41) gives the average free-
energy density〈

Fβ,σ 2 [D]

N

〉
D

= 1

2

σ 2
0

σ 2
(1 − ζ ) + ζ

2β
log

(
β

2πσ 2ζ

)

+ ζ

2β

∫
dλ ρd (λ) log(λ), (43)

where we defined the average eigenvalue density ρd (λ) =
〈ρd (λ|Z)〉Z of the empirical covariance matrix, with

ρd (λ|Z) = 1

d

d∑
�=1

δ[λ − λ�(ZTZ/N )]. (44)

The variance of free-energy density is

Var

(
Fβ,σ 2 [D]

N

)
= Var

(
E [D]

N

)
+ T 2Var

(
S(P[D])

N

)
= ζ 2

4β2

∫
dλ dλ̃ Cd (λ, λ̃) log(λ) log(λ̃) + σ 4

0 (1 − ζ )

2σ 4N
, (45)

where we defined the correlation function Cd (λ, λ̃) = 〈ρd (λ|Z)ρd (λ̃|Z)〉Z − 〈ρd (λ|Z)〉Z〈ρd (λ̃|Z)〉Z. Clearly, if∫
dλ dλ̃ Cd (λ, λ̃) f (λ, λ̃) → 0 as (N, d ) → ∞, for any smooth function f (λ, λ̃), then the free-energy density fβ[D] = Fβ[D]/N

is self-averaging.
Finally, if we use Eq. (43) in the free-energy density Eq. (17) for η = 0, and assume Gaussian data with true population

covariance matrix � = Id , then we find

lim
N→∞

fβ[D] =
{

β−ζ

2β
log

(
2πσ 2

0 (1−ζ )
β−ζ

)
+ log β+1

2 − 1
2β

(ζ log ζ + (1 − ζ ) log(1 − ζ ) + 2ζ ) if β > ζ

−∞ if β ∈ (0, ζ )
, (46)

with the convention 0 log 0 = 0. Since for λ ∈ [a−, a+] and 0 < ζ < 1 the eigenvalue spectrum ρd (λ|Z) converges to
(2πλζ )−1√(λ − a−)(a+ − λ) in a distributional sense as (N, d ) → ∞ [30], with a± = (1 ± √

ζ )2, the free-energy density is
self-averaging. Its values are plotted versus the temperature in Fig. 3. Furthermore, the average free-energy density Eq. (46)
is identical to that of Ref. [9]. Since limβ↓ζ limN→∞ fβ[D] is finite, the system exhibits a zeroth-order phase transition [31] at
T = 1/ζ .

2. Free energy of MAP inference

We next assume that the true parameters θ0 are drawn at random, with mean 0 and covariance matrix S2Id . As before we
rescale zi(μ) → zi(μ)/

√
d where zi(μ) = O(1), and define J = C/ζ (so that C = ZTZ/N) and Cζσ 2η = ζJσ 2η. Then the average

of Eq. (41) over θ0 becomes〈〈
Fβ,σ 2 [D]

N

〉
D

〉
θ0

= ζ

2β
+ 1

2

∫
dλ ρd (λ)

[
S2ζηλ

λ + ζσ 2η
+ σ 2

0

σ 2

[
1 − ζλ

λ + ζσ 2η

]
+ ζ

β
log(λ + ζσ 2η)

]

− ζ

2β
log(2πeσ 2β−1ζ ). (47)
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Furthermore, using Eq. (42), we obtain, under the same as-
sumptions, that Var(Fβ,σ 2 [D]/N ) is of the form [21]

Var

(
Fβ,σ 2 [D]

N

)
=

∫
dλ dλ̃Cd (λ, λ̃)�(λ, λ̃) + O

(
1

N

)
. (48)

Hence, for η > 0 the conditional free energy is self-averaging
with respect to the realization of the true parameter if the
spectrum ρd (λ|Z) is self-averaging (since then Cd (λ, λ̃) → 0
as (N, d ) → ∞). The latter, under the same assumptions, is
the condition for the MAP estimator Eq. (20) of the noise σ 2

to be self-averaging (see Ref. [21]) and hence the free-energy
Eq. (17) is self-averaging if ρd (λ|Z) is self-averaging. This
is the case, e.g., for Gaussian data with covariance matrix
� = Id .

IV. DISCUSSION AND OUTLOOK

In this paper we derived exact results for the Bayesian
model Eq. (2) of the linear regression t = Zθ + σε, where
t ∈ IRN and Z ∈ IRN×d . Mapping this to a Gibbs-Boltzmann
distribution Eq. (11), with finite (inverse) “temperature” β,
allowed us to investigate properties of several inference pro-
tocols [1] for finite N (sample size), d (dimension) and in
the (high-dimensional) limit (N, d ) → ∞. In particular, we
studied statistical properties of free energy which is the main
object of interest in statistical physics approaches to inference
(see Ref. [9] and references therein).

If the noise strength σ 2 is known and the distributions of
the data Z and the noise ε are Gaussian, then the distribution
of the MAP estimator θ̂MAP of θ is the Gaussian mixture
Eq. (28), for any finite (N, d ). We used Eq. (28) to show
that the distribution of ML estimator θ̂ML is the Student’s
t-distribution Eq. (29). The consequence of this is that its
marginal, the univariate Student distribution (which can be
used in statistical hypothesis testing to calculate p-values), has
“fat” tails for finite (N, d ). However, any marginal of Eq. (29)
that describes a finite number of components of θ̂ML has a
Gaussian form when (N, d ) → ∞.

Also, for any choice for the distributions of Z and ε, the
ML estimator σ̂ 2

ML of the noise parameter σ 2 is self-averaging,
i.e., its variance is vanishing as (N, d ) → ∞. Furthermore,
deviations of σ̂ 2

ML from its mean, estimated by the bound in
Eq. (35), are exponentially suppressed in (N, d ) for Gaussian
ε. As a consequence the inference of σ̂ 2

ML is almost deter-
ministic even for moderate values of (N, d ). This result is
independent of Z.

We used the distribution of the ML estimator Eq. (29) to
derive the characteristic function of the MSE (38). The latter
was used to derive the mean and variance Eq. (39), giving a
condition for the MSE to be self-averaging as (N, d ) → ∞,
and to estimate deviations of MSE from its mean, given by the
bound Eq. (40), for finite (N, d ). The result Eq. (39) suggests
that the deviations of θ̂ML from θ0 can grow significantly with
covariate correlations, proportional to Tr[�−1], thus leading
to severe inefficacy in the inference of θ.

If we assume that the noise parameter σ 2 is known, then
we obtain average Eq. (43) and variance Eq. (45) of the
conditional free-energy density Eq. (12) of ML inference with
finite temperature T = 1/β and for finite (N, d ). This result

is independent of the distributions of the data Z and the noise
ε. For finite T , the noise estimator σ̂ 2

ML, given by Eq. (20)
with η = 0, is self-averaging when (N, d ) → ∞. The same
is true for the free-energy density Eq. (17) if the density of
eigenvalue spectrum Eq. (44) of the covariance matrix ZTZ/N
is self-averaging. The latter is true if Z is sampled from
a Gaussian with � = Id . In that case, and upon assuming
Gaussian noise ε, the free-energy density Eq. (17) recovers the
result obtained by the replica method [9]. The ML estimator
σ̂ 2

ML diverges at β = ζ , and the free energy density Eq. (17)
is discontinuous at this value of β. This is an instance where
the presence of the thermal noise with finite generic β allows
us to derive an interesting result. Another is Eq. (37) for the
finite temperature ML noise estimator.

The additional assumption that the true parameters θ0 are
drawn at random, with mean 0 and covariance S2Id , allows
us to derive average Eq. (47) and variance Eq. (48) of the
conditional free-energy Eq. (12) of MAP inference for finite T
and finite (N, d ). We also computed the variance of the MAP
estimator Eq. (20) of the noise parameter σ 2. These results are
again independent of the distributions of the data Z and the
noise ε. We find that the free energy Eq. (17) is self-averaging
if the spectrum of the empirical covariance matrix ZTZ/N is
self-averaging as (N, d ) → ∞.

The above results emphasize that still much can be learned
about high-dimensional Bayesian linear regression from exact
calculations with standard methods. While we present this as
a minimal model of inference in the high-dimensional setting,
linear regression is commonly used in many areas of research.
For example, linear regression models are used extensively
in the statistical analysis of genetic data. Genome-wide as-
sociation studies, where the aim is to undercover effect sizes
for each single nucleotide polymorphisms (SNPs), often use
extremely high-dimensional datasets. Here the number N of
individuals is O(103) and the number d of SNPs is O(106)
with correlations occurring due to the phenomenon of genetic
linkage. Another biological example is the analysis of gene
expression data where due to nature of biological pathways
involved [32], correlations pose a significant challenge in un-
covering true associations in data [33].

Many questions remain still open and we hope that this
paper may contribute to future work in this direction. Some
results appear well within reach, such as the extension to
sub-Gaussian noise for the argument that leads to Eq. (35),
employing techniques used in Ref. [34]. Other results are
less immediate but seem feasible, such as extending some
of the ML results to MAP inference, starting from evalua-
tion of the distribution of θ̂MAP Eq. (28) for (N, d ) → ∞.
Another interesting line of work would be to try to extend
our present results to generalized linear models (GLMs), a
very similar distribution for the estimator θ̂MAP has already
been conjectured through the use of the replica method, [9].
Other crucial investigations, such as a rigorous analytical
study of the effect of model mismatch, appear instead to be
still quite challenging with current techniques. Overall, we ex-
pect high-dimensional linear regression to serve as a starting
point to tackle more realistic scenarios, which should include,
among other things, correlation between data and noise and
dimensional mismatch between the teacher and the student
model.
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