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Abstract

In this paper we analyze the bipartite network of countries and products from UN data on country production. We define
the country-country and product-product projected networks and introduce a novel method of filtering information based
on elements’ similarity. As a result we find that country clustering reveals unexpected socio-geographic links among the
most competing countries. On the same footings the products clustering can be efficiently used for a bottom-up
classification of produced goods. Furthermore we mathematically reformulate the ‘‘reflections method’’ introduced by
Hidalgo and Hausmann as a fixpoint problem; such formulation highlights some conceptual weaknesses of the approach.
To overcome such an issue, we introduce an alternative methodology (based on biased Markov chains) that allows to rank
countries in a conceptually consistent way. Our analysis uncovers a strong non-linear interaction between the diversification
of a country and the ubiquity of its products, thus suggesting the possible need of moving towards more efficient and
direct non-linear fixpoint algorithms to rank countries and products in the global market.
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Introduction

Complex Networks
Networks emerged in the recent years as the main mathematical

tool for the description of complex systems. In particular, the

mathematical framework of graph theory made possible to extract

relevant information from different biological and social systems

[1–3]. In this paper we use some concepts of network theory to

address the problem of economic complexity [4–7].

Our activity is in the track of a long-standing interaction

between economics and physical sciences [8–12] and it explains,

extends and complements a recent analysis done on the network of

trades between nations [13,14]. Hidalgo and Hausmann (HH)

address the problem of competitiveness and robustness of different

countries in the global economy by studying the differences in the

Gross Domestic Product and assuming that the development of a

country is related to different ‘‘capabilities’’. While countries

cannot directly trade capabilities, it is the specific combination of

those capabilities that results in different products traded. More

capabilities are supposed to bring higher returns and the

accumulation of new capabilities provides an exponentially

growing advantage. Therefore the origin of the differences in the

wealth of countries can be inferred by the record of trading

activities analyzed as the expressions of the capabilities of the

countries.

Revealed Competitive Advantage and the country-
product Matrix

We consider here the Standard Trade Classification data for the

years in the interval 1992{2000. In the following we shall analyze

the year 2000, but similar results apply for the other snapshots. For

the year 2000 the data provides information on Nc~129 different

countries and Np~772 different products.

To make a fair comparison between the trades, it is useful to

employ Balassa’s Revealed Comparative Advantage (RCA) [15]

i.e. the ratio between the export share of product p in country c

and the share of product p in the world market

RCAcp~
XcpP

p’
Xcp’

=

P
c’

Xc’pP
c’,p’

Xc’p’
ð1Þ

where Xcp represents the dollar exports of country c in product p.

We consider country c to be a competitive exporter of product p

if its RCA is larger than some threshold value, which we take as 1

as in standard economics literature; previous studies have verified

that small variations around such threshold do not qualitatively

change the results.

The network structure of the country-product competition is

given by the semipositive matrix M̂M defined as
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Mcp~
1 if RCAcpwR�

0 if RCAcpvR�

�
ð2Þ

where R� is the threshold (R� = 1).

To such matrix M̂M we can associate a graph whose nodes are

divided into two sets fcg of Nc nodes (the countries) and fpg of Np

nodes (the products) where a link between a node c and a node p

exists if and only if Mcp~1, i.e. a bipartite graph. The matrix M̂M is

strictly related to the adjacency matrix of the country-product

bipartite network.

The fundamental structure of the matrix M̂M is revealed by

ordering the rows of the matrix by the number of exported

products and the columns by the number of exporting countries:

doing so, M̂M assumes a substantially triangular structure. Such

structure reflects the fact that some countries export a large

fraction of all products (highly diversified countries), and some

products appear to be exported by most countries (ubiquitous

products). Moreover, the countries that export few products tend

to export only ubiquitous products, while highly diversified

countries are the only ones to export the products that only few

other countries export.

This triangular structure is therefore revealing us that there is a

systematic relationship between the diversification of countries and

the ubiquity of the products they make. Poorly diversified

countries have a revealed comparative advantage (RCA) almost

exclusively in ubiquitous products, whereas the most diversified

countries appear to be the only ones with RCAs in the less

ubiquitous products which in general are of higher value on the

market. It is therefore plausible that such structure reflects a

ranking among the nations.

The fact that the matrix is triangular rather than block-diagonal

suggests that some successful countries are more diversified than

expected. Countries add more new products to the export mix

while keeping, at the same time, their traditional productions. The

structure of M̂M therefore contradicts most of classical macro-

economical models that always predict a specialization of countries

in particular sectors of production (i.e. countries should aggregate

in communities producing similar goods) that would result in a

more or less block-diagonal matrix M̂M.

In the following, we are going to analyze the economical

consequences of the structure of the bipartite country-product

graph described by M̂M. In particular, we analyze the community

structure induced by M̂M on the countries and products projected

networks. As a second step, we reformulate as a linear fixpoint

algorithm the HH’s reflection method to determine the countries and

products respective rankings induced by M̂M. In this way we are

able to clarify the critical aspects of this method and its

mathematical weakness. Finally, to assign proper weights to the

countries, we formulate a mathematically well defined biased

Markov chain process on the country-product network; to account

for the bipartite structure of the network, we introduce a two

parameter bias in this method. To select the optimal bias, we

compare the results of our algorithm with a standard economic

indicator, the gross domestic product GDP. The optimal values of

the parameters suggests a highly non-linear interaction between

the number of different products produced by each country

(diversification) and the number of different countries producing

each product (ubiquity) in determining the competitiveness of

countries and products. This fact suggests that, to better capture

the essential features of economical competition of countries, we

need a more direct and efficient non-linear approach.

Results

The Network of Countries
In order to obtain an immediate understanding of the economic

relations between countries induced by their products a possible

approach is to define a projection graph obtained from the original

set of bipartite relations represented by the matrix M̂M[16]. The

idea is to connect the various countries with a link whose strength

is given by the number of products they mutually produce. In such

a way the information stored in the matrix M̂M is projected into the

network of countries as shown in Fig. 1.

The country network can be characterized by the (NC|NC)

country-country matrix ĈC~M̂MM̂MT . The non-diagonal elements Ccc’

correspond to the number of products that countries c and c’ have

in common (i.e. are produced by both countries). They are a

measure of their mutual competition, allowing a quantitative

comparison between economic and financial systems [17]; the

diagonal elements Ccc corresponds to the number of products

produced by country c and are a measure of the diversification of

country c.

To quantify the competition among two countries, we can

define the similarity matrix among countries as

SC
cc’~2

Ccc’

CcczCc’c’
: ð3Þ

Note that 0ƒSC
cc’ƒ1 and that small (large) values indicate small

(large) correlations between the products of the two countries c
and c’. Similar approaches to define a correlation between vertices

or a distance [18] have often been employed in the field of

complex networks, for example to detect protein correlations [19]

or to characterize the interdependencies among clinical traits of

the orofacial system [20,21].

The first problem for large correlation networks is how to

visualize the relevant structure. The simplest approach to visualize

the most similar vertices is realized by building a Minimal

Spanning Tree (MST) [22,23]. In this method, starting from an

empty graph, edges (c,c’) are added in order of decreasing

similarity until all the nodes are connected; to obtain a tree, edges

that would introduce a loop are discarded. A further problem is to

split the graph in smaller sub-graphs (communities) that share

important common feature, i.e. have strong correlations. Similarity,

like analogous correlation indicators, can be used to detect the

inner structure of a network; while different methods for

community detection vary in their detailed implementation

[24,25], they give reasonably similar qualitative results when the

indicators contain the same information.

The MST method can be thus generalized in order to detect the

presence of communities by adding the extra condition that no

edge between two nodes that have been already connected to some

other node is allowed. In this way we obtain a set of disconnected

sub-trees (i.e. a forest) embedded in the MST. This Minimal

Spanning Forest (MSF) method naturally splits the network of

countries into separate subsets. This method allows for the

visualization of correlations in a large network and at the same

time performs a sort of community detection if not precise,

certainly very fast.

By visual inspection in Fig. 2 we can spot a large subtree

composed by developed countries and some other subtrees in

which clear geographical correlations are present. Notice that each

subtree contains countries with very similar products, i.e. countries

that are competing on the same markets. In particular, developing

countries seem to be mostly direct competitors of their geograph-
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ical neighbors. This features despite its high frequency in most

geographical areas, comes unexpected since it is not the most

rationale choice [26,27]: as an example, both banks [28] and

countries [29] trade preferentially with similar partners, thereby

affecting the whole robustness of the system [30,31]. This behavior

can be reproduced by simple statistical models based on agents’

fitnesses [32,33].

The Network of Products
Similarly to countries, we can project the bipartite graph into a

product network by connecting two products if they are produced

by the same one or more countries and giving a weight to this link

proportional to the number of countries producing both products.

Such network can be represented by the (NP|NP) product-product

matrix P̂P~M̂MT M̂M. The non-diagonal elements Ppp’ correspond to

the number of countries producing both p and p’ have in common,

while the diagonal elements Ppp corresponds to the number of

countries producing p.

In analogy with Eq. (3), the similarity matrix among products is

defined as

SP
pp’~2

Ppp’

PppzPp’p’
: ð4Þ

It indicates how much products are correlated on a market: a

value SP
pp’~1 indicates that whenever product p is present on the

market of a country, also product p’ would be present. This could

be for example the case of two products p, p’ that are both

necessary for the same and only industrial process.

As in the case of countries, the MSF algorithm can be applied to

visualize correlations and detect communities. In the case of the

product network this analysis brings to an apparently contradic-

tory results: let’s see why. Products are officially characterized by a

hierarchical topology assigned by UN. Within this classification

similar issue as ‘‘metalliferous ores and metal scraps’’ (groups

27.xx) are in a totally different section with respect to ‘‘non ferrous

metals’’ (groups 68.xx). By applying our new algorithm, based on

the economical competition network M̂M, one would naively expect

that products belonging to the same UN hierarchy should belong

to the same community and vice-versa; therefore, if we would assign

different colors to different UN hierarchies, one would expect all

the nodes belonging to a single community to be of the same color.

In Fig. 3 we show that this is not the case. Such a paradox can be

understood by analyzing in closer detail the detected communities

with the MSF method. As an example, we show in Fig. 4 a large

community where most of the vertices belong to the area of

‘‘vehicle part and constituents’’. In this cluster we can spot the

noticeable presence of a vertex belonging to ‘‘food’’ hierarchy.

This apparent contradiction is solved up by noticing that such

vertex refers to colza seeds, a typical plant recently used mostly for

bio-fuels and not for alimentation: our MSF method has correctly

positioned this ‘‘food’’ product in the ‘‘vehicle’’ cluster. Therefore,

methods based on community detection could be considered as a

possible rational substitute for current top-down ‘‘human-made’’

taxonomies [32].

Ranking Countries and Products by Reflection Method
Hidalgo and Haussman (HH) have introduced in [13,14] the

fundamental idea that the complex set of capabilities of countries

(in general hardly comparable between different countries) can be

Figure 1. The network of countries and products and the two possible projections.
doi:10.1371/journal.pone.0047278.g001
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inferred from the structure of matrix M̂M (that we can observe). In

this spirit, ubiquitous products require few capabilities and can be

produced by most countries, while diversified countries possess

many capabilities allowing to produce most products. Therefore,

the most diversified countries are expected to be amongst the top

ones in the global competition; on the same footing ubiquitous

products are likely to correspond to low-quality products.

In order to refine such intuitions in a quantitative ranking

among countries and products, the authors of [13,14] have

introduced two quantities: the nth level diversification d(n)
c (called kc,n

in [13,14]) of the country c and the nth level ubiquity u(n)
p (called kp,n

in [13,14]) of the product p. At the zeroth order the diversification

of a country is simply defined as the number of its products or

d(0)
c ~

XNp

p~1

Mcp:kc ð5Þ

where kc is the degree of the node c in the bipartite country-

product network); analogously the zeroth order ubiquity of a

product is defined as the number of different countries producing

it

u(0)
p ~

XNc

c~1

Mcp:kp ð6Þ

where kp is the degree of the node p in the bipartite country-

product network. The diversification kc is intended to represent

the zeroth order measure of the ‘‘quality’’ of the country c with the

idea that the more products a country exports the strongest its

position on the marker. The ubiquity kp is intended to represent

the zeroth order measure of the ‘‘dis-value of the product p in the

global competition with the idea that the more countries produce a

product, the least is its value on the market.

Figure 2. The Minimal Spanning Forest for the Countries. The various subgraphs have a distinct geographical similarity. We show in green
northern European countries and in red the ‘‘Baltic’’ republics. In general neighboring (also in a social and cultural sense) countries compete for the
production of similar goods.
doi:10.1371/journal.pone.0047278.g002
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Figure 3. The Minimal Spanning Forest (MSF) for the Products. We put a different color according to the first digit used in COMTRADE
classification. This analysis should reveal correlation between different but similar products.
doi:10.1371/journal.pone.0047278.g003

Figure 4. The largest tree in the Products MSF. When passing from classification colors to the real products name, we see they are all strongly
related. It is interesting the presence of colza seeds in the lower left corner of the figure.
doi:10.1371/journal.pone.0047278.g004
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In the original approach these two initial quantities are refined

in an iterative way via the so-called ‘‘reflections method’’,

consisting in defining the diversification of a country at the

(nz1)th iteration as the average ubiquity of its product at the nth

iteration and the ubiquity of a country at the (nz1)th iteration as

the average diversification of its producing countries at the nth

iteration:

d (nz1)
c ~

1

kc

XNp

p~1
Mcpu(n)

p

u(nz1)
p ~

1

kp

XNc

c~1
Mcpd(n)

c

8>>><
>>>:

ð7Þ

In vectorial form, this can be cast in the following form

d(n)~ĴJAu(n{1)

u(n)~ĴJBd(n{1)

8><
>: ð8Þ

where d(n) is the Nc{dimensional vector of components d(n)
c , u(n)

is the Np{dimensional vector of components u(n)
p , and where we

have called ĴJA~ĈCM̂M and ĴJB~P̂PM̂Mt (the upper suffix t stands for

‘‘transpose’’), with ĈC and P̂P respectively the Nc|Nc and Np|Np

square diagonal matrices defined by Ccc’~k{1
c dcc’ and

Ppp’~k{1
p dpp’.

Such an approach suffers from some problems. The first one is

related to the fact that the process is defined in a bipartite networks

and therefore even and odd iterations have different meanings. In

fact, let us consider the diversification d(1)
c of the cth country: as

prescribed by the algorithm, d(1)
c is the average ubiquity of the

products of the cth country at the 0-th iteration. Therefore

countries with most ubiquitous (less valuable) products would get

an highest 1st order diversification. On the other hand, the

approximately triangular structure of M̂M tells us that these

countries are the same ones with a small degree and therefore

with a low value of the 0{th order diversification d (0). As shown

to by [13,14], this is the case also to higher orders; therefore the

diversifications at even and odd iterations are substantially an anti-

correlated. Conversely, successive even iterations are positively

correlated so that d(2)
c looks a refinement of d (0)

c , d(4)
c a refinement

of d(2)
c and so on. Same considerations apply to the iterations for

the ubiquity of products.

The major problem in the HH algorithm is that it is a case of a

consensus dynamics [34], i.e. the state of a node at iteration t is just

the average of the state of its neighbors at iteration t{1. It is well

known that such iterations have the uniform state (all the nodes

equal) as the natural fixpoint. It is therefore puzzling how such

‘‘equalizing’’ procedure could lead to any form of ranking. To

solve such a puzzle, let’s write the HH algorithm as a simple

iterative linear system and analyze its behavior.

Focusing only on even iterations and on diversifications, we can

write HH procedure as:

d(2n)~ĴJAĴJBd(2n{2)~(ĴJAĴJB)nd (0)~ĤHnd (0) , ð9Þ

where ĤH~ĴJAĴJB~ĈCM̂MP̂PM̂Mt is a Nc|Nc squared matrix.

The matrix ĤH in Eq.9 is a Markovian stochastic matrix when it

acts from the right on positive vectors, in the sense that every element

Hcc’§0 and

XNc

c~1

Hcc’~1 :

In particular for the given M̂M adjacency matrix it is also ergodic.

Therefore, its spectrum of eigenvalues is bounded in absolute

value by its unique upper eigenvalue l1~1. Since ĤH acts on

d (2n{2) from the left, the right eigenvector e1 corresponding to the

largest eigenvalue l1~1 is simply a uniform vector with identical

components, i.e. in the n?? limit d (2n) converges to the fixpoint

e1 where all countries have the same asymptotic diversification.

It is therefore not a case that HH prescribe to stop their

algorithm at a finite number of iterations and that they introduce

as a recipe to consider as the ranking of a country the rescaled

version of the 2nth level diversifications [14]

~dd(2n)
c ~

d(2n)
c {d(2n)

s(2n)
d

, ð10Þ

where d(2n) is the arithmetic mean of all d(2n)
c and s(2n)

d the

standard deviation of the same set. With these prescription, HH

algorithm seems to converge to an approximately constant value

after *16 steps.

This observed behavior can be easily be explained by noticing

that, in contrast with the erroneous statement in [14], finding the

fitness by the reflection method can be reformulated as a fix-point

problem (our Eq. 9) and solved using the spectral properties of a

linear system. In fact,since the ergodic Markovian nature of

ĤH we can order eigenvalues/eigenvectors such that

DlNc
DƒDlNc

Dƒ:::ƒDl2Dvl1~1. Therefore, expanding d(0) in terms

of the right eigenvectors fe1,e2,:::,eNc
g of ĤH the initial condition

d(0)~a1e1za2e2z:::zaNc eNc ,

we can write the 2n-th iterate as

d(2n)~a1e1za2ln
2e2z:::zaNc ln

Nc
eNc

~a1e1za2ln
2e2zO (l3=l2)nð Þ :

ð11Þ

Therefore, at sufficiently large n the ordering of the countries is

completely determined by the components of e2; notice that such

an asymptotic ordering is independent from the initial condition

d (0) and therefore should be considered as the appropriate fixpoint

renormalized fitness d� for all countries.

What happens to the HH scheme? At sufficiently large n,

Sd (2n)T&ae1 and sd(2n)!a2ln
2e2z0 (l3=l2)nð Þ; therefore d(2n)

becomes proportional to e2 (Eq. 10). The number of iterations it
needed to converge is given by the ratio between l2 and l3

((l3=l2)it%1); therefore the it*16 iterations prescribed by HH

are not a general prescription but depend on the spectrum of the

network analyzed.

Notice also that when the numerical reflection method is used,

the renormalized fitness represents a deviation O(ln
2) from a

constant and can be detected only if it is bigger than the numerical

error; therefore only ‘‘not too big’’ it can be employed. On the

other hand, the spectral characterization we propose does not

suffer from such a pitfall even when. Similar considerations can be
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developed for the even iterations of the reflection method for the

products.

Biased Markov Chain Approach and Non-linear
Interactions

Having assessed the problems of HH’s method, we investigate

the possibility of defining alternative linear algorithms able to

implement similar economical intuitions about the ranking of the

countries while keeping a more robust mathematical foundation.

In formulating such a new scheme we will keep the approximation

of linearity for the iterations even though we shall find in the

results hints of the non-linear nature of the problem.

Our approach is inspired to the well-known PageRank

algorithm [35]. PageRank (named after the WWW, where vertices

are the pages) is one of the most famous of Bonacich centrality

measures [36]. In the original PageRank method the ranking of a

vertex is proportional to the time spent on it by an unbiased

random walker (in different contexts [11] analogous measures

assess the stability of a firm in a business firm network).

We define the weights of vertices to be proportional to the time

that an appropriately biased random walker on the network spends on

them in the large time limit [37]. As shown below, such weights,

being the generalization of kc and kp, give a measure respectively

of competitiveness of countries and ‘‘dis-quality’’ (or lack of

competitiveness) of products. As the nodes of our bipartite network

are entities that are logically and conceptually separated (countries

and products), we assign to the random walker a different bias

when jumping from countries to products respect to jumping from

products to countries.

Let us call w(n)
c weight of country c at the nth iteration and w(n)

p

fitness of product p at the nth iteration. We define the following

Markov process on the country-product bipartite network

w(nz1)
c (a,b)~

PNp
p~1 Gcp(b)w(n)

p (a,b)

w(nz1)
p (a,b)~

PNc
c~1 Gpc(a)w(n)

c (a,b)

8><
>: ð12Þ

where the Markov transition matrix ĜG is given by

Gcp(b)~
Mcpk{b

cPNc
c’~1 Mc’pk

{b
c’

Gpc(a)~
Mcpk{a

pPNp
p’~1 Mcp’k

{a
p’

8>>>>><
>>>>>:

ð13Þ

Here Gcp gives the probability to jump from product p to country c

in a single step, and Gpc the probability to jump from country c to

product p also in a single step. Note that Eqs.(13) define a

(NczNp){dimensional connected Markov chain of period two.

Therefore, random walkers initially starting from countries, will be

found on products at odd steps and on countries at even ones; the

reverse happens for random walkers starting from products. By

considering separately the random walkers starting from countries

and from products, we can reduce this Markov chain to two

ergodic Markov chains of respective dimension Nc and Np. In

particular, if the walker starts from a country, using a vectorial

formalism, we can write for the weights of countries

w(nz1)
c (a,b)~T̂T(a,b)w(n)

c (a,b) ð14Þ

where the Nc|Nc ergodic stochastic matrix T̂T is defined by

Tcc’(a,b)~
XNp

p~1

Gcp(b)Gpc’(a) : ð15Þ

At the same time for products we can write

w(nz1)
p (a,b)~ŜS(a,b)w(n)

p (a,b) , ð16Þ

where the Np|Np ergodic stochastic matrix ŜS is given by

Spp’(a,b)~
XNc

c~1

Gpc(a)Gcp’(b) : ð17Þ

Given the structure of T̂T and ŜS, it is simple to show that the two

matrices share the same spectrum which is upper bounded in

modulus by the unique eigenvalue m1~1. For both matrices, the

eigenvectors corresponding to m1 are the stationary and asymptotic

weights fw�c (a,b)g and fw�p(a,b)g of the Markov chains. In order

to find analytically such asymptotic values, we apply the detailed

balance condition:

Gpcw�c~Gcpw�p V(c,p) ð18Þ

which gives

w�c~A
PNp

p~1 Mcpk{a
p

� �
k{b

c

w�p~B
PNc

c~1 Mcpk{b
c

� �
k{a

p

8>><
>>:

ð19Þ

where A and B are normalization constants. Note that for

a~b~0 Eq. (13) gives the completely unbiased random walk for

which T̂T~ĤHt where ĤH is given in Eq. (9). Therefore, in this case

Eqs. (19) become

w�c(0,0)*kc

w�p(0,0)*kp ,

8><
>: ð20Þ

as for the case of unbiased random walks on a simple connected

network the asymptotic weight of a node is proportional to its

connectivity. Thus, in the case of a~b~0 we recover the zeroth

order iteration of the HH’s reflection method. Note that, in the

same spirit of HH, w�c(0,0) gives a rough measure of the

competitiveness of country c while w�p gives an approximate

measure of the dis-quality in the market of product p. By

continuity, we associate the same meaning of competitiveness/

disquality to the stationary states w�c/w�p(0,0) at different values of

a and b.

To understand the behavior of our ranking respect to the bias,

we have analyzed the mean correlation (square of the Pearson

coefficient) for the year 1998 (other years give analogous results)
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between the logarithm of the GDP of each country and its weight

(Eqs. (19) for different values of a and b (see Fig. 5). We are aware

that GDP is not an absolute measure of wealth [38] as it does not

account directly for relevant quantities like the wealth due to

natural resources [39]. Nevertheless, we expect GDP to mono-

tonically increase with the wealth. What network analysis shows is

that the number of products is correlated with both quantities. We

envisage such kind of analysis in order to define suitable policies

for underdeveloped countries [40].

It is interesting to note that the region of large correlations

(region inside the contour plot in the Fig. 5) is found in the positive

quadrant for about 0:2vav1:8 and 0:5vbv1; in particular the

maximal value is approximately at a^1:1 and b^0:8. These

results can be connected with the approximately ‘‘triangular’’

shape of the matrix M̂M. In fact, let us rewrite Eqs. (19) (apart from

the normalization constant) as:

w�c*k1{b
c Sk{a

p T
c

w�p*k1{a
p Sk{b

c Tp

8><
>: ,

where Sk{a
p Tc is the arithmetic average of k{a

p of the products

exported by country c and Sk{b
c Tp is the arithmetic average of

k{b
c for countries exporting product p. Since b is substantially

positive and slightly smaller of 1 and a is definitely positive with

optimal values around 1, the competitive countries will be

characterized by a good balance between a high value of kc and

a small typical value of kp of its products. Nevertheless, since the

optimal values of a are distributed up to the region of values much

larger than 1 (i.e. 1{b is significantly smaller than 1), we see that

the major role for the asymptotic weight of a country is played by

the presence in its portfolio of un-ubiquitous products which alone

give the dominant contribution to w�c . A similar reasoning leads to

the conclusion that the dis-value of a product is basically

determined by the presence in the set of its producers of poorly

diversified countries that are basically exporting only products

characterized by a low level of complexity.

Our new approach based on biased Markov chain theory

permits thus to implement the interesting ideas developed by HH

in [14] on a more solid mathematical basis using the framework of

linear iterated transformations and avoiding the indicated flaws of

HH’s ‘‘reflection method’’. Interestingly, our results reveal a

strongly non-linear entanglement between the two basic informa-

tion one can extract from the matrix M̂M: diversification of

countries and ubiquity of products. In particular, this non-linear

relation makes explicit an almost extremal influence of ubiquity of

products on the competitiveness of a country in the global market:

having ‘‘good’’ or complex products in the portfolio is more

important than to have many products of poor value. Further-

more, the information that a product has among its producers

some poorly diversified countries is nearly sufficient to say that it is

a non-complex (dis-valuable) product in the market. This strongly

non-linear entanglement between diversifications of countries and

ubiquities of products is an indication of the necessity to go beyond

the linear approach in order to introduce more sound and direct

description of the competition of countries and products possibly

based on a suitable ab initio non-linear approach characterized by a

smaller number of ad hoc assumptions [41].

Discussion

In this paper we applied methods of graph theory to the analysis

of the economic productions of countries. The information is

available in the form of an Nc|Np rectangular matrix M̂M giving

the different production of the possible Np goods for each of the

Nc countries. The matrix M̂M corresponds to a bipartite graph, the

country-product network, that can be projected into the country-

country network ĈC and the product-product network P̂P. By using

complex-networks analysis, we can attain an effective filtering of

the information contained in ĈC and P̂P. We introduce a new

Figure 5. The plot of the mean Correlation (square of Pearson coefficient, R2) between logarithm of GDP and fixpoint weights of
countries in the biased (Markovian) random walk method as a function of parameters a and b. The contour plot for a level of R2~0:4 is
indicated as a green loop in the orange region (year ~ 1998).
doi:10.1371/journal.pone.0047278.g005
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filtering algorithm that identifies communities of countries with

similar production. As an unexpected result, this analysis shows

that neighboring countries tend to compete over the same markets

instead of diversifying. We also show that a classification of goods

based on such filtering provides an alternative product taxonomy

determined by the countries’ activity. We then study the ranking of

the countries induced by the country-product bipartite network.

We first show that HH’s ranking is the fix-point of a linear process;

in this way we can avoid some logical and numerical pitfalls and

clarify some of its weak theoretical points. Finally, in analogy with

the Google PageRank algorithm, we define a biased, two

parameters Markov chain algorithm to assign ranking weights to

countries and products by taking into account the structure of the

adjacency matrix of the country-product bipartite network. By

correlating the fix-point ranking (i.e. competitiveness of countries

and products) with the GDP of each country, we find that the

optimal bias parameters of the algorithm indicate a strongly non-

linear interaction between the diversification of the countries and

the ubiquity of the products. The fact that we still find some

discrepancies between fitnesses and GDP is related to the fact that

they measure related but different things. In particular while GDP

is a measure of the richness of a country, the fitness measures the

possibility of a certain country to sustain its growth or to recover

from crises.

Materials and Methods

Graphs
A graph is a couple G~(V ,E) where V~ vi Di~1 . . . nAf g is the

set of vertices, and E(V|V is the set of edges. A graph G can be

represented via its adjacency matrix A.

Aij~
1 if an edge exists between vi and vj

0 otherwise :

�
ð21Þ

The degree ki of the node vi is the number
P

j Aij of its

neighbors.

An unbiased random walk on a graph G is characterized by a

probability pij~1=ki of jumping from a vertex vi to one of its ki

neighbors and is described by the jump matrix

JG~K{1A , ð22Þ

Figure 6. Graphs of the overlap OSF{T between the spanning forest and threshold graph and the ratio NT
C tð Þ=NSF

C versus the
threshold t. Here NT

C is the number of clusters in the threshold graph and NSF
C is the number of clusters in the spanning forest. (left panel:) Curves

for GC NP,nð Þ. In this deterministic case, NSF
C equals the number of communities and both curves intersect when the NSF

C ~NT
C . (right panel:) Curves

for Grnd
C NP,nð Þ; curves are averaged over 100 configurations of the noise.

doi:10.1371/journal.pone.0047278.g006

Table 1. Example of estimates of the number of communities
for the noisy case; notice that N�C is close to the expected
value NP.

NP n NSF
C N�C

10 5 14 11.1

9 5 13 10.1

7 5 9 7.2

5 10 12 6.2

5 7 8 6.5

5 5 7 5.3

Intersection point between OSF{T tð Þ and r tð Þ are calculated averaging curves
over 100 random samples.
doi:10.1371/journal.pone.0047278.t001

A Network Analysis of Countries’ Export Flows

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e47278



where K is the diagonal matrix Kij~kidij corresponding to the

nodes degrees.

Bipartite Graphs
A bipartite graph is a triple G~(A,B,E) where

A~ ai Di~1 . . . nAf g and B~ bj Dj~1 . . . nB

� �
are two disjoint sets

of vertices, and E(A|B is the set of edges, i.e. edges exist only

between vertices of the two different sets A and B.

The bipartite graph G can be described by the matrix M̂M

defined as

Mij~
1 if an edge exists between ai and bj

0 otherwise :

�
ð23Þ

In terms of M̂M, it is possible to define the adjacency matrix A of

G as

A~
0 M

MT 0 :

� �
ð24Þ

It is also useful to define the co-occurrence matrices PA~MMT

and PB~MT M that respectively count the number of common

neighbors between two vertices of A or of B. PA is the weighted

adjacency matrix of the co-occurrence graph CA with vertices on

A and where each non-zero element of PA corresponds to an edge

among vertices ai and aj with weight PA
ij . The same is valid for the

co-occurrence matrix PB and the co-occurrence graph CB.

Many projection schemes for a bipartite graph G start from

constructing the graphs CA or CB and eliminating the edges

whose weights are less than a given threshold or whose statistical

significance is low.

Matrix from RCA
To make a fair comparison between the exports, it is useful to

employ Balassa’s Revealed Comparative Advantage (RCA) [15]

i.e. the ratio between the export share of product p in country c

and the share of product p in the world market

RCAcp~
XcpP

p’
Xcp’

=

P
c’

Xc’pP
c’,p’

Xc’p’
ð25Þ

where Xcp represents the dollar exports of country c in product p.

The network structure is given by the country-product

adjacency matrix M̂M defined as

Mcp~
1 if RCAcpwR�

0 if RCAcpvR�

�
ð26Þ

where R� is the threshold. A positive entry, Mcp~1 tells us that

country c is a competitive exporter of the product p.

Minimal Spanning Forest
The spanning forest algorithm (SFA) is a computationally less-

demanding variant of the Spanning Tree Algorithm (STA) where

single operations can take up to O log DV Dð Þ respect to the STA

case where all operations are O 1ð Þ. Here cluster is a synonymous

for connected component.

To analyze the performance of the SFA, we use as a benchmark

a weighted network with well defined communities. We consider

the graph GC NP,nð Þ composed joining NP communities each

consisting in a clique of n nodes; the total number of nodes is

NG~n:NP. A function f : 1 . . . NGf g? 1 . . . NPf g associates to

each node i its community fi; links between nodes i and j have

weight wij~2{Dfi{fj D. Thus, links inside a community have weight

one, while links among separate communities have smaller

weights. We also consider the extremely noisy case Grnd
C NP,nð Þ

where weights between nodes i and j are random variables

uniformily distributed in the interval 0,2{Dfi{fj D
	 


.

Furthermore we shall also consider for a weighted graph

G~ V ,E,Wð Þ the associate threshold graph T G,tð Þ~ V ,E’ð Þ
where E’ is the subset of edges in E having weight higher than

the threshold t. The threshold graph T GC NP,nð Þ,1{Eð Þ corre-

sponds to the separated NP communities for Ev2{NP .

Finally, to compare the minimum spanning forest MSF Gð Þ
with a threshold graph T G,tð Þ, we consider the overlap OSF{T to

be the fraction of links in MSF Gð Þ that belong to the same cluster

of T G,tð Þ.
In the non-random case, the SFA individuates correctly the

communities and NP equals the number of clusters NSF
C of

MSF GC NP,nð Þð Þ. Notice that the ratio r tð Þ~NT
C tð Þ=NSF

C

between the number of clusters NT
C tð Þ of T GC NP,nð Þ,tð Þ versus

the threshold t intersects the overlap OSF{T when NT
C ~NP is the

correct number of communities. The left panel of Fig. 6 shows

such behavior for NP~n~5.

In the noisy case, we find that NSF
C overestimates NP; on the

other hand, r tð Þ intersect OSF{T tð Þ at t~t� for values r t�ð Þ less

than one and N�C~r t�ð Þ:NSF
C gives a better estimate of Np. Such

an effect is shown in Table 1 that shows for several values of NP, n
the proximity of N�C to the expected number of communities NP.

The right panel of fig. 6 shows the intersection of curves for

NP~n~5 in the noisy case.
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